These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28964213)

  • 1. High resolution steady-state measurements of thermal contact resistance across thermal interface material junctions.
    Warzoha RJ; Donovan BF
    Rev Sci Instrum; 2017 Sep; 88(9):094901. PubMed ID: 28964213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady-state low thermal resistance characterization apparatus: The bulk thermal tester.
    Burg BR; Kolly M; Blasakis N; Gschwend D; Zürcher J; Brunschwiler T
    Rev Sci Instrum; 2015 Dec; 86(12):124903. PubMed ID: 26724058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-precision apparatus for the characterization of thermal interface materials.
    Kempers R; Kolodner P; Lyons A; Robinson AJ
    Rev Sci Instrum; 2009 Sep; 80(9):095111. PubMed ID: 19791968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralow Interfacial Thermal Resistance of Graphene Thermal Interface Materials with Surface Metal Liquefaction.
    Dai W; Ren XJ; Yan Q; Wang S; Yang M; Lv L; Ying J; Chen L; Tao P; Sun L; Xue C; Yu J; Song C; Nishimura K; Jiang N; Lin CT
    Nanomicro Lett; 2022 Dec; 15(1):9. PubMed ID: 36484932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dry-Contact Thermal Interface Material with the Desired Bond Line Thickness and Ultralow Applied Thermal Resistance.
    Dou Z; Zhang B; Xu P; Fu Q; Wu K
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38019643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-Level Thermally Conductive yet Soft Graphene Thermal Interface Materials.
    Dai W; Ma T; Yan Q; Gao J; Tan X; Lv L; Hou H; Wei Q; Yu J; Wu J; Yao Y; Du S; Sun R; Jiang N; Wang Y; Kong J; Wong C; Maruyama S; Lin CT
    ACS Nano; 2019 Oct; 13(10):11561-11571. PubMed ID: 31550125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of Thermal Interface Materials.
    Chung DDL
    Small; 2022 Apr; 18(16):e2200693. PubMed ID: 35266295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling.
    Zhang K; Chai Y; Yuen MM; Xiao DG; Chan PC
    Nanotechnology; 2008 May; 19(21):215706. PubMed ID: 21730585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-Organic-Inorganic Nanocomposite Thermal Interface Materials with Ultralow Thermal Resistances.
    Yegin C; Nagabandi N; Feng X; King C; Catalano M; Oh JK; Talib AJ; Scholar EA; Verkhoturov SV; Cagin T; Sokolov AV; Kim MJ; Matin K; Narumanchi S; Akbulut M
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):10120-10127. PubMed ID: 28240857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Thermal Interface Materials for Thermal Management of High-Power Electronics.
    Xing W; Xu Y; Song C; Deng T
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials.
    Barako MT; Isaacson SG; Lian F; Pop E; Dauskardt RH; Goodson KE; Tice J
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):42067-42074. PubMed ID: 29119783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate.
    Yang J; Yang Y; Waltermire SW; Gutu T; Zinn AA; Xu TT; Chen Y; Li D
    Small; 2011 Aug; 7(16):2334-40. PubMed ID: 21648073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laminar Metal Foam: A Soft and Highly Thermally Conductive Thermal Interface Material with a Reliable Joint for Semiconductor Packaging.
    Liu P; Luo Y; Liu J; Chiang SW; Wu D; Dai W; Kang F; Lin W; Wong CP; Yang C
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15791-15801. PubMed ID: 33755413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High performance liquid metal thermal interface materials.
    Chen S; Deng Z; Liu J
    Nanotechnology; 2021 Feb; 32(9):092001. PubMed ID: 33207322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust, Self-Healing, and Multi-Use Poly(Urethane-Urea-Imide) Elastomer as a Durable Adhesive for Thermal Interface Materials.
    Wu Z; Dong J; Guo H; Shang R; Qin X; Xia Y; Li X; Zhao X; Ji C; Zhang Q
    Small; 2024 Apr; ():e2401815. PubMed ID: 38573922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparative Study of Thermal Aging Effect on the Properties of Silicone-Based and Silicone-Free Thermal Gap Filler Materials.
    Chowdhury ASMR; Rabby MM; Kabir M; Das PP; Bhandari R; Raihan R; Agonafer D
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34202198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of graphene layer thickness and mechanical compliance on interfacial heat flow and thermal conduction in solid-liquid phase change materials.
    Warzoha RJ; Fleischer AS
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12868-76. PubMed ID: 24983698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface.
    Zhou Y; Zhang X; Hu M
    Nanoscale; 2016 Jan; 8(4):1994-2002. PubMed ID: 26700890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ Thermoreflectance Characterization of Thermal Resistance in Multilayer Electronics Packaging.
    Poopakdee N; Abdallah Z; Pomeroy JW; Kuball M
    ACS Appl Electron Mater; 2022 Apr; 4(4):1558-1566. PubMed ID: 35573030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of the thermophysical properties of self-suspended thin films based on steady-state thermography.
    Wang X; Zhao Q; Li Z; Yang S; Zhang J
    Opt Express; 2020 May; 28(10):14560-14572. PubMed ID: 32403494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.