These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 28964213)

  • 21. Intrinsic thermal interfacial resistance measurement in bonded metal-polymer foils.
    Rajagopal MC; Man T; Agrawal A; Kuntumalla G; Sinha S
    Rev Sci Instrum; 2020 Oct; 91(10):104901. PubMed ID: 33138563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scanning thermal microscopy with heat conductive nanowire probes.
    Timofeeva M; Bolshakov A; Tovee PD; Zeze DA; Dubrovskii VG; Kolosov OV
    Ultramicroscopy; 2016 Mar; 162():42-51. PubMed ID: 26735005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Noncured Graphene Thermal Interface Materials for High-Power Electronics: Minimizing the Thermal Contact Resistance.
    Sudhindra S; Kargar F; Balandin AA
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34203500
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High Thermal Conductivity of Sandwich-Structured Flexible Thermal Interface Materials.
    Jing L; Cheng R; Tasoglu M; Wang Z; Wang Q; Zhai H; Shen S; Cohen-Karni T; Garg R; Lee I
    Small; 2023 Mar; 19(11):e2207015. PubMed ID: 36642828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultracompliant Heterogeneous Copper-Tin Nanowire Arrays Making a Supersolder.
    Gong W; Li P; Zhang Y; Feng X; Major J; DeVoto D; Paret P; King C; Narumanchi S; Shen S
    Nano Lett; 2018 Jun; 18(6):3586-3592. PubMed ID: 29767979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Occupational needs and evaluation methods for cold protective clothing.
    Anttonen H
    Arctic Med Res; 1993; 52 Suppl 9():1-76. PubMed ID: 8048995
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal-Conductivity Apparatus for Steady-State, Comparative Measurement of Ceramic Coatings.
    Slifka AJ
    J Res Natl Inst Stand Technol; 2000; 105(4):591-605. PubMed ID: 27551628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film.
    Chien HC; Yao DJ; Huang MJ; Chang TY
    Rev Sci Instrum; 2008 May; 79(5):054902. PubMed ID: 18513085
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Some Aspects of Thermal Transport across the Interface between Graphene and Epoxy in Nanocomposites.
    Wang Y; Yang C; Pei QX; Zhang Y
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8272-9. PubMed ID: 26959807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Realizing the nanoscale quantitative thermal mapping of scanning thermal microscopy by resilient tip-surface contact resistance models.
    Li Y; Mehra N; Ji T; Zhu J
    Nanoscale Horiz; 2018 Sep; 3(5):505-516. PubMed ID: 32254136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical Reactions Impede Thermal Transport Across Metal/β-Ga
    Aller HT; Yu X; Wise A; Howell RS; Gellman AJ; McGaughey AJH; Malen JA
    Nano Lett; 2019 Dec; 19(12):8533-8538. PubMed ID: 31747285
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal Imaging Metrology with a Smartphone Sensor.
    Stanger LR; Wilkes TC; Boone NA; McGonigle AJS; Willmott JR
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29986406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A facility for characterizing the steady-state and dynamic thermal performance of microelectromechanical system thermal switches.
    Cho JH; Richards CD; Richards RF
    Rev Sci Instrum; 2008 Mar; 79(3):034901. PubMed ID: 18377038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement of local thermal contact resistance with a periodic heating method using microscale lock-in thermography.
    Ishizaki T; Igami T; Nagano H
    Rev Sci Instrum; 2020 Jun; 91(6):064901. PubMed ID: 32611042
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites.
    Barako MT; Roy-Panzer S; English TS; Kodama T; Asheghi M; Kenny TW; Goodson KE
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19251-9. PubMed ID: 26284489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoscale characterization of the thermal interface resistance of a heat-sink composite material by in situ TEM.
    Kawamoto N; Kakefuda Y; Mori T; Hirose K; Mitome M; Bando Y; Golberg D
    Nanotechnology; 2015 Nov; 26(46):465705. PubMed ID: 26508524
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A hot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope.
    Dames C; Chen S; Harris CT; Huang JY; Ren ZF; Dresselhaus MS; Chen G
    Rev Sci Instrum; 2007 Oct; 78(10):104903. PubMed ID: 17979450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A noncontact thermal microprobe for local thermal conductivity measurement.
    Zhang Y; Castillo EE; Mehta RJ; Ramanath G; Borca-Tasciuc T
    Rev Sci Instrum; 2011 Feb; 82(2):024902. PubMed ID: 21361625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Note: Thermal analog to atomic force microscopy force-displacement measurements for nanoscale interfacial contact resistance.
    Iverson BD; Blendell JE; Garimella SV
    Rev Sci Instrum; 2010 Mar; 81(3):036111. PubMed ID: 20370234
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film.
    Qiu L; Wang X; Su G; Tang D; Zheng X; Zhu J; Wang Z; Norris PM; Bradford PD; Zhu Y
    Sci Rep; 2016 Feb; 6():21014. PubMed ID: 26880221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.