These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28964224)

  • 1. Invited Review Article: Instrumentation for nuclear magnetic resonance in zero and ultralow magnetic field.
    Tayler MCD; Theis T; Sjolander TF; Blanchard JW; Kentner A; Pustelny S; Pines A; Budker D
    Rev Sci Instrum; 2017 Sep; 88(9):091101. PubMed ID: 28964224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-situ Overhauser-enhanced nuclear magnetic resonance at less than 1 μT using an atomic magnetometer.
    Lee HJ; Lee SJ; Shim JH; Moon HS; Kim K
    J Magn Reson; 2019 Mar; 300():149-152. PubMed ID: 30776565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultralow field NMR spectrometer with an atomic magnetometer near room temperature.
    Liu G; Li X; Sun X; Feng J; Ye C; Zhou X
    J Magn Reson; 2013 Dec; 237():158-163. PubMed ID: 24225528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for measurement of spin-spin couplings with sub-mHz precision using zero- to ultralow-field nuclear magnetic resonance.
    Wilzewski A; Afach S; Blanchard JW; Budker D
    J Magn Reson; 2017 Nov; 284():66-72. PubMed ID: 28961479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A subfemtotesla multichannel atomic magnetometer.
    Kominis IK; Kornack TW; Allred JC; Romalis MV
    Nature; 2003 Apr; 422(6932):596-9. PubMed ID: 12686995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-
    Chen Y; Quan W; Zou S; Lu Y; Duan L; Li Y; Zhang H; Ding M; Fang J
    Sci Rep; 2016 Nov; 6():36547. PubMed ID: 27830744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear magnetic resonance at millitesla fields using a zero-field spectrometer.
    Tayler MCD; Sjolander TF; Pines A; Budker D
    J Magn Reson; 2016 Sep; 270():35-39. PubMed ID: 27391123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalar relaxation of NMR transitions at ultralow magnetic field.
    Tayler MCD; Gladden LF
    J Magn Reson; 2019 Jan; 298():101-106. PubMed ID: 30544013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zero-field remote detection of NMR with a microfabricated atomic magnetometer.
    Ledbetter MP; Savukov IM; Budker D; Shah V; Knappe S; Kitching J; Michalak DJ; Xu S; Pines A
    Proc Natl Acad Sci U S A; 2008 Feb; 105(7):2286-90. PubMed ID: 18287080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relaxation behavior study of ultrasmall superparamagnetic iron oxide nanoparticles at ultralow and ultrahigh magnetic fields.
    Wang W; Dong H; Pacheco V; Willbold D; Zhang Y; Offenhaeusser A; Hartmann R; Weirich TE; Ma P; Krause HJ; Gu Z
    J Phys Chem B; 2011 Dec; 115(49):14789-93. PubMed ID: 21972868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR relaxation in porous materials at zero and ultralow magnetic fields.
    Tayler MCD; Ward-Williams J; Gladden LF
    J Magn Reson; 2018 Dec; 297():1-8. PubMed ID: 30316016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. J-coupling nuclear magnetic resonance spectroscopy of liquids in nT fields.
    Bernarding J; Buntkowsky G; Macholl S; Hartwig S; Burghoff M; Trahms L
    J Am Chem Soc; 2006 Jan; 128(3):714-5. PubMed ID: 16417349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of ultra-low field NMR signal with a commercial QuSpin single-beam atomic magnetometer.
    Savukov I; Kim YJ; Schultz G
    J Magn Reson; 2020 Aug; 317():106780. PubMed ID: 32688163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation.
    Allred JC; Lyman RN; Kornack TW; Romalis MV
    Phys Rev Lett; 2002 Sep; 89(13):130801. PubMed ID: 12225013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive and stable vector magnetometer for operation in zero and finite fields.
    Bison G; Bondar V; Schmidt-Wellenburg P; Schnabel A; Voigt J
    Opt Express; 2018 Jun; 26(13):17350-17359. PubMed ID: 30119547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear spin gyroscope based on an atomic comagnetometer.
    Kornack TW; Ghosh RK; Romalis MV
    Phys Rev Lett; 2005 Dec; 95(23):230801. PubMed ID: 16384290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement Sensitivity Improvement of All-Optical Atomic Spin Magnetometer by Suppressing Noises.
    Chen X; Zhang H; Zou S
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27322272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening.
    Jiménez-Martínez R; Knappe S; Kitching J
    Rev Sci Instrum; 2014 Apr; 85(4):045124. PubMed ID: 24784676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field-cycling NMR experiments in an ultra-wide magnetic field range: relaxation and coherent polarization transfer.
    Zhukov IV; Kiryutin AS; Yurkovskaya AV; Grishin YA; Vieth HM; Ivanov KL
    Phys Chem Chem Phys; 2018 May; 20(18):12396-12405. PubMed ID: 29623979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subfemtotesla scalar atomic magnetometry using multipass cells.
    Sheng D; Li S; Dural N; Romalis MV
    Phys Rev Lett; 2013 Apr; 110(16):160802. PubMed ID: 23679590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.