These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 28964336)

  • 1. Characterizing clinically relevant natural variants of GPCRs using computational approaches.
    Sengupta D; Sonar K; Joshi M
    Methods Cell Biol; 2017; 142():187-204. PubMed ID: 28964336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insights and functional implications of inter-individual variability in β2-adrenergic receptor.
    Tandale A; Joshi M; Sengupta D
    Sci Rep; 2016 Apr; 6():24379. PubMed ID: 27075228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular determinants of GPCR pharmacogenetics: Deconstructing the population variants in β
    Joshi M; Nikte SV; Sengupta D
    Adv Protein Chem Struct Biol; 2022; 128():361-396. PubMed ID: 35034724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular insights into the dynamics of pharmacogenetically important N-terminal variants of the human β2-adrenergic receptor.
    Shahane G; Parsania C; Sengupta D; Joshi M
    PLoS Comput Biol; 2014 Dec; 10(12):e1004006. PubMed ID: 25501358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential Application of Alchemical Free Energy Simulations to Discriminate GPCR Ligand Efficacy.
    Lee HS; Seok C; Im W
    J Chem Theory Comput; 2015 Mar; 11(3):1255-66. PubMed ID: 26579772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and Functional Analysis of a β
    Komolov KE; Du Y; Duc NM; Betz RM; Rodrigues JPGLM; Leib RD; Patra D; Skiniotis G; Adams CM; Dror RO; Chung KY; Kobilka BK; Benovic JL
    Cell; 2017 Apr; 169(3):407-421.e16. PubMed ID: 28431242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the effects on constitutive activation and drug binding of a D130N mutation in the β2 adrenergic receptor via molecular dynamics simulation.
    Zhu Y; Yuan Y; Xiao X; Zhang L; Guo Y; Pu X
    J Mol Model; 2014 Nov; 20(11):2491. PubMed ID: 25342155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What can simulations tell us about GPCRs: Integrating the scales.
    Sengupta D; Joshi M; Athale CA; Chattopadhyay A
    Methods Cell Biol; 2016; 132():429-52. PubMed ID: 26928554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the role of Asp79(2.50) in β2 adrenergic receptor activation from molecular dynamics simulations.
    Ranganathan A; Dror RO; Carlsson J
    Biochemistry; 2014 Nov; 53(46):7283-96. PubMed ID: 25347607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential Dynamics Underlying the Gln27Glu Population Variant of the β
    Bhosale S; Nikte SV; Sengupta D; Joshi M
    J Membr Biol; 2019 Oct; 252(4-5):499-507. PubMed ID: 31520159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the conformation transition in the activation pathway of β2 adrenergic receptor via a targeted molecular dynamics simulation.
    Xiao X; Zeng X; Yuan Y; Gao N; Guo Y; Pu X; Li M
    Phys Chem Chem Phys; 2015 Jan; 17(4):2512-22. PubMed ID: 25494239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural bioinformatics analysis of variants on GPCR function.
    Syed Haneef SA; Ranganathan S
    Curr Opin Struct Biol; 2019 Apr; 55():161-177. PubMed ID: 31174013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamic simulations reveal suboptimal binding of salbutamol in T164I variant of β2 adrenergic receptor.
    Bandaru S; Alvala M; Nayarisseri A; Sharda S; Goud H; Mundluru HP; Singh SK
    PLoS One; 2017; 12(10):e0186666. PubMed ID: 29053759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring GPCR-Lipid Interactions by Molecular Dynamics Simulations: Excitements, Challenges, and the Way Forward.
    Sengupta D; Prasanna X; Mohole M; Chattopadhyay A
    J Phys Chem B; 2018 Jun; 122(22):5727-5737. PubMed ID: 29685028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CHIP-MYTH: a novel interactive proteomics method for the assessment of agonist-dependent interactions of the human β₂-adrenergic receptor.
    Kittanakom S; Barrios-Rodiles M; Petschnigg J; Arnoldo A; Wong V; Kotlyar M; Heisler LE; Jurisica I; Wrana JL; Nislow C; Stagljar I
    Biochem Biophys Res Commun; 2014 Mar; 445(4):746-56. PubMed ID: 24561123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulation of β-adrenoceptors and their coupled G proteins.
    Li ZY; Su CY; Ding B
    Eur Rev Med Pharmacol Sci; 2019 Jul; 23(14):6346-6351. PubMed ID: 31364142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-Based Prediction of G-Protein-Coupled Receptor Ligand Function: A β-Adrenoceptor Case Study.
    Kooistra AJ; Leurs R; de Esch IJ; de Graaf C
    J Chem Inf Model; 2015 May; 55(5):1045-61. PubMed ID: 25848966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping the functional binding sites of cholesterol in β2-adrenergic receptor by long-time molecular dynamics simulations.
    Cang X; Du Y; Mao Y; Wang Y; Yang H; Jiang H
    J Phys Chem B; 2013 Jan; 117(4):1085-94. PubMed ID: 23298417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LITiCon: a discrete conformational sampling computational method for mapping various functionally selective conformational states of transmembrane helical proteins.
    Bhattacharya S; Vaidehi N
    Methods Mol Biol; 2012; 914():167-78. PubMed ID: 22976028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GPCRs through the keyhole: the role of protein flexibility in ligand binding to β-adrenoceptors.
    Emtage AL; Mistry SN; Fischer PM; Kellam B; Laughton CA
    J Biomol Struct Dyn; 2017 Sep; 35(12):2604-2619. PubMed ID: 27532213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.