These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 28964336)

  • 21. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function.
    Rosenbaum DM; Cherezov V; Hanson MA; Rasmussen SG; Thian FS; Kobilka TS; Choi HJ; Yao XJ; Weis WI; Stevens RC; Kobilka BK
    Science; 2007 Nov; 318(5854):1266-73. PubMed ID: 17962519
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effective application of bicelles for conformational analysis of G protein-coupled receptors by hydrogen/deuterium exchange mass spectrometry.
    Duc NM; Du Y; Zhang C; Lee SY; Thorsen TS; Kobilka BK; Chung KY
    J Am Soc Mass Spectrom; 2015 May; 26(5):808-817. PubMed ID: 25740347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling GPCR active state conformations: the β(2)-adrenergic receptor.
    Simpson LM; Wall ID; Blaney FE; Reynolds CA
    Proteins; 2011 May; 79(5):1441-57. PubMed ID: 21337626
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identifying multiple active conformations in the G protein-coupled receptor activation landscape using computational methods.
    Dong SS; Goddard WA; Abrol R
    Methods Cell Biol; 2017; 142():173-186. PubMed ID: 28964335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular Dynamics and Machine Learning Study of Adrenaline Dynamics in the Binding Pocket of GPCR.
    Seshadri K; Krishnan M
    J Chem Inf Model; 2023 Jul; 63(14):4291-4300. PubMed ID: 37415273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of allosteric regulation of β
    Manna M; Niemelä M; Tynkkynen J; Javanainen M; Kulig W; Müller DJ; Rog T; Vattulainen I
    Elife; 2016 Nov; 5():. PubMed ID: 27897972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relevance of rhodopsin studies for GPCR activation.
    Deupi X
    Biochim Biophys Acta; 2014 May; 1837(5):674-82. PubMed ID: 24041646
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pharmacogenetics of the G protein-coupled receptors.
    Thompson MD; Cole DE; Capra V; Siminovitch KA; Rovati GE; Burnham WM; Rana BK
    Methods Mol Biol; 2014; 1175():189-242. PubMed ID: 25150871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional differences between full and partial agonists: evidence for ligand-specific receptor conformations.
    Seifert R; Wenzel-Seifert K; Gether U; Kobilka BK
    J Pharmacol Exp Ther; 2001 Jun; 297(3):1218-26. PubMed ID: 11356949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring the mechanism of F282L mutation-caused constitutive activity of GPCR by a computational study.
    Gao N; Liang T; Yuan Y; Xiao X; Zhao Y; Guo Y; Li M; Pu X
    Phys Chem Chem Phys; 2016 Oct; 18(42):29412-29422. PubMed ID: 27735961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational studies of G protein-coupled receptor complexes: Structure and dynamics.
    Sensoy O; Almeida JG; Shabbir J; Moreira IS; Morra G
    Methods Cell Biol; 2017; 142():205-245. PubMed ID: 28964337
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advances in Computational Techniques to Study GPCR-Ligand Recognition.
    Ciancetta A; Sabbadin D; Federico S; Spalluto G; Moro S
    Trends Pharmacol Sci; 2015 Dec; 36(12):878-890. PubMed ID: 26538318
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mapping functional group free energy patterns at protein occluded sites: nuclear receptors and G-protein coupled receptors.
    Lakkaraju SK; Yu W; Raman EP; Hershfeld AV; Fang L; Deshpande DA; MacKerell AD
    J Chem Inf Model; 2015 Mar; 55(3):700-8. PubMed ID: 25692383
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loop prediction for a GPCR homology model: algorithms and results.
    Goldfeld DA; Zhu K; Beuming T; Friesner RA
    Proteins; 2013 Feb; 81(2):214-28. PubMed ID: 22965891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toward the active conformations of rhodopsin and the beta2-adrenergic receptor.
    Gouldson PR; Kidley NJ; Bywater RP; Psaroudakis G; Brooks HD; Diaz C; Shire D; Reynolds CA
    Proteins; 2004 Jul; 56(1):67-84. PubMed ID: 15162487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Layer-Wise Relevance Analysis for Motif Recognition in the Activation Pathway of the
    Gutiérrez-Mondragón MA; König C; Vellido A
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mechanistic role of Helix 8 in GPCRs: Computational modeling of the dopamine D2 receptor interaction with the GIPC1-PDZ-domain.
    Sensoy O; Weinstein H
    Biochim Biophys Acta; 2015 Apr; 1848(4):976-83. PubMed ID: 25592838
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies on the interactions between β2 adrenergic receptor and Gs protein by molecular dynamics simulations.
    Feng Z; Hou T; Li Y
    J Chem Inf Model; 2012 Apr; 52(4):1005-14. PubMed ID: 22404225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Membrane potentials regulating GPCRs: insights from experiments and molecular dynamics simulations.
    Vickery ON; Machtens JP; Zachariae U
    Curr Opin Pharmacol; 2016 Oct; 30():44-50. PubMed ID: 27474871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bridging molecular docking to membrane molecular dynamics to investigate GPCR-ligand recognition: the human A₂A adenosine receptor as a key study.
    Sabbadin D; Ciancetta A; Moro S
    J Chem Inf Model; 2014 Jan; 54(1):169-83. PubMed ID: 24359090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.