These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
389 related articles for article (PubMed ID: 28964364)
1. Indigenous leafy vegetables of Eastern Africa - A source of extraordinary secondary plant metabolites. Neugart S; Baldermann S; Ngwene B; Wesonga J; Schreiner M Food Res Int; 2017 Oct; 100(Pt 3):411-422. PubMed ID: 28964364 [TBL] [Abstract][Full Text] [Related]
2. Relating sensory profiles of canned amaranth (Amaranthus cruentus), cleome (Cleome gynandra), cowpea (Vigna unguiculata) and Swiss chard (Beta vulgaris) leaves to consumer acceptance. Onyeoziri IO; Kinnear M; de Kock HL J Sci Food Agric; 2018 Apr; 98(6):2231-2242. PubMed ID: 28981142 [TBL] [Abstract][Full Text] [Related]
3. Natural diversity of hydroxycinnamic acid derivatives, flavonoid glycosides, carotenoids and chlorophylls in leaves of six different amaranth species. Schröter D; Baldermann S; Schreiner M; Witzel K; Maul R; Rohn S; Neugart S Food Chem; 2018 Nov; 267():376-386. PubMed ID: 29934181 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of Minerals, Phytochemical Compounds and Antioxidant Activity of Mexican, Central American, and African Green Leafy Vegetables. Jiménez-Aguilar DM; Grusak MA Plant Foods Hum Nutr; 2015 Dec; 70(4):357-64. PubMed ID: 26490448 [TBL] [Abstract][Full Text] [Related]
5. Phytochemical fingerprinting of vegetable Brassica oleracea and Brassica napus by simultaneous identification of glucosinolates and phenolics. Velasco P; Francisco M; Moreno DA; Ferreres F; García-Viguera C; Cartea ME Phytochem Anal; 2011; 22(2):144-52. PubMed ID: 21259374 [TBL] [Abstract][Full Text] [Related]
6. Characterization and quantification of flavonoids and hydroxycinnamic acids in curly kale (Brassica oleracea L. Convar. acephala Var. sabellica) by HPLC-DAD-ESI-MSn. Olsen H; Aaby K; Borge GI J Agric Food Chem; 2009 Apr; 57(7):2816-25. PubMed ID: 19253943 [TBL] [Abstract][Full Text] [Related]
7. Genetic variation of carotenoids, vitamin E and phenolic compounds in Provitamin A biofortified maize. Muzhingi T; Palacios-Rojas N; Miranda A; Cabrera ML; Yeum KJ; Tang G J Sci Food Agric; 2017 Feb; 97(3):793-801. PubMed ID: 27173638 [TBL] [Abstract][Full Text] [Related]
8. Comparison of leafy kale populations from Italy, Portugal, and Turkey for their bioactive compound content: phenolics, glucosinolates, carotenoids, and chlorophylls. Ferioli F; Giambanelli E; D'Antuono LF; Costa HS; Albuquerque TG; Silva AS; Hayran O; Koçaoglu B J Sci Food Agric; 2013 Nov; 93(14):3478-89. PubMed ID: 23749678 [TBL] [Abstract][Full Text] [Related]
9. Liquiritin elicitation can increase the content of medicinally important glucosinolates and phenolic compounds in Chinese kale plants. Akram W; Saeed T; Ahmad A; Yasin NA; Akbar M; Khan WU; Ahmed S; Guo J; Luo W; Wu T; Li G J Sci Food Agric; 2020 Mar; 100(4):1616-1624. PubMed ID: 31773731 [TBL] [Abstract][Full Text] [Related]
10. X-ray fluorescence analysis of selected micronutrients in ten African indigenous leafy vegetables cultivated in Nairobi, Kenya. Dehayem-Kamadjeu A; Okonda J Pan Afr Med J; 2019; 33():296. PubMed ID: 31692868 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous identification of glucosinolates and phenolic compounds in a representative collection of vegetable Brassica rapa. Francisco M; Moreno DA; Cartea ME; Ferreres F; García-Viguera C; Velasco P J Chromatogr A; 2009 Sep; 1216(38):6611-9. PubMed ID: 19683241 [TBL] [Abstract][Full Text] [Related]
12. Nutritional compound analysis and morphological characterization of spider plant (Cleome gynandra) - an African indigenous leafy vegetable. Omondi EO; Engels C; Nambafu G; Schreiner M; Neugart S; Abukutsa-Onyango M; Winkelmann T Food Res Int; 2017 Oct; 100(Pt 1):284-295. PubMed ID: 28873690 [TBL] [Abstract][Full Text] [Related]
13. Brassica-enriched wheat bread: Unraveling the impact of ontogeny and breadmaking on bioactive secondary plant metabolites of pak choi and kale. Klopsch R; Baldermann S; Hanschen FS; Voss A; Rohn S; Schreiner M; Neugart S Food Chem; 2019 Oct; 295():412-422. PubMed ID: 31174776 [TBL] [Abstract][Full Text] [Related]
14. Identification of the phenolic components of collard greens, kale, and Chinese broccoli. Lin LZ; Harnly JM J Agric Food Chem; 2009 Aug; 57(16):7401-8. PubMed ID: 19627150 [TBL] [Abstract][Full Text] [Related]
15. Antiproliferative effects of fresh and thermal processed green and red cultivars of curly kale (Brassica oleracea L. convar. acephala var. sabellica). Olsen H; Grimmer S; Aaby K; Saha S; Borge GI J Agric Food Chem; 2012 Aug; 60(30):7375-83. PubMed ID: 22769426 [TBL] [Abstract][Full Text] [Related]
16. Quantification and in vitro bioaccessibility of glucosinolates and trace elements in Brassicaceae leafy vegetables. Cámara-Martos F; Obregón-Cano S; Mesa-Plata O; Cartea-González ME; de Haro-Bailón A Food Chem; 2021 Mar; 339():127860. PubMed ID: 32866700 [TBL] [Abstract][Full Text] [Related]
17. Intercropping Induces Changes in Specific Secondary Metabolite Concentration in Ethiopian Kale ( Ngwene B; Neugart S; Baldermann S; Ravi B; Schreiner M Front Plant Sci; 2017; 8():1700. PubMed ID: 29033969 [TBL] [Abstract][Full Text] [Related]
19. Effects of Different Drying Methods on Untargeted Phenolic Metabolites, and Antioxidant Activity in Chinese Cabbage ( Managa MG; Sultanbawa Y; Sivakumar D Molecules; 2020 Mar; 25(6):. PubMed ID: 32183223 [TBL] [Abstract][Full Text] [Related]
20. Effects of amaranth addition on the pro-vitamin A content, and physical and antioxidant properties of extruded pro-vitamin A-biofortified maize snacks. Beswa D; Dlamini NR; Amonsou EO; Siwela M; Derera J J Sci Food Agric; 2016 Jan; 96(1):287-94. PubMed ID: 25641316 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]