These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 28964501)

  • 1. Enrichment, isolation, and biodegradation potential of long-branched chain alkylphenol degrading non-ligninolytic fungi from wastewater.
    Rajendran RK; Lin CC; Huang SL; Kirschner R
    Mar Pollut Bull; 2017 Dec; 125(1-2):416-425. PubMed ID: 28964501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of the endocrine disrupter 4-t-octylphenol by the non-ligninolytic fungus Fusarium falciforme RRK20: Process optimization, estrogenicity assessment, metabolite identification and proposed pathways.
    Rajendran RK; Lee YW; Chou PH; Huang SL; Kirschner R; Lin CC
    Chemosphere; 2020 Feb; 240():124876. PubMed ID: 31542577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation and toxicity reduction of the endocrine disruptors nonylphenol, 4-tert-octylphenol and 4-cumylphenol by the non-ligninolytic fungus Umbelopsis isabellina.
    Janicki T; Krupiński M; Długoński J
    Bioresour Technol; 2016 Jan; 200():223-9. PubMed ID: 26492175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of endocrine-disrupting compounds by ligninolytic fungi: mechanisms involved in the degradation.
    Cajthaml T
    Environ Microbiol; 2015 Dec; 17(12):4822-34. PubMed ID: 24650234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of the endocrine disrupter 4-tert-octylphenol by the yeast strain Candida rugopelliculosa RRKY5 via phenolic ring hydroxylation and alkyl chain oxidation pathways.
    Rajendran RK; Huang SL; Lin CC; Kirschner R
    Bioresour Technol; 2017 Feb; 226():55-64. PubMed ID: 27987401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of the alkylphenol and bisphenol A distributions in marine organisms and implications for human health: A case study of the East China Sea.
    Gu Y; Yu J; Hu X; Yin D
    Sci Total Environ; 2016 Jan; 539():460-469. PubMed ID: 26379260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodecontamination of water from bisphenol A using ligninolytic fungi and the modulation role of humic acids.
    Loffredo E; Traversa A; Senesi N
    Ecotoxicol Environ Saf; 2012 May; 79():288-293. PubMed ID: 22305120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of
    Yan B; Luo L; Yang H
    Environ Technol; 2020 Dec; 41(28):3722-3731. PubMed ID: 31120337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi.
    Cajthaml T; Kresinová Z; Svobodová K; Möder M
    Chemosphere; 2009 May; 75(6):745-50. PubMed ID: 19243809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of endocrine disruptors in solid-liquid two-phase partitioning systems by enrichment cultures.
    Villemur R; Dos Santos SC; Ouellette J; Juteau P; Lépine F; Déziel E
    Appl Environ Microbiol; 2013 Aug; 79(15):4701-11. PubMed ID: 23728808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detoxification and simultaneous removal of phenolic xenobiotics and heavy metals with endocrine-disrupting activity by the non-ligninolytic fungus Umbelopsis isabellina.
    Janicki T; Długoński J; Krupiński M
    J Hazard Mater; 2018 Oct; 360():661-669. PubMed ID: 30219529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems.
    Shi W; Wang L; Rousseau DP; Lens PN
    Environ Sci Pollut Res Int; 2010 May; 17(4):824-33. PubMed ID: 20213308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable biodegradation of phenolic endocrine-disrupting chemicals by Phragmites australis-rhizosphere bacteria association.
    Toyama T; Ojima T; Tanaka Y; Mori K; Morikawa M
    Water Sci Technol; 2013; 68(3):522-9. PubMed ID: 23925178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bisphenol A degradation in water by ligninolytic enzymes.
    Gassara F; Brar SK; Verma M; Tyagi RD
    Chemosphere; 2013 Aug; 92(10):1356-60. PubMed ID: 23668961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of opdA, a gene involved in biodegradation of the endocrine disrupter octylphenol.
    Porter AW; Hay AG
    Appl Environ Microbiol; 2007 Nov; 73(22):7373-9. PubMed ID: 17890335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of endocrine disruptors in urban wastewater using Pleurotus ostreatus bioreactor.
    Křesinová Z; Linhartová L; Filipová A; Ezechiáš M; Mašín P; Cajthaml T
    N Biotechnol; 2018 Jul; 43():53-61. PubMed ID: 28502780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examining the biodegradation of endocrine disrupting bisphenol A and nonylphenol in WWTPs.
    Press-Kristensen K; Lindblom E; Schmidt JE; Henze M
    Water Sci Technol; 2008; 57(8):1253-6. PubMed ID: 18469398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation mechanism and overall removal rates of endocrine disrupting chemicals by aquatic plants.
    Reis AR; Tabei K; Sakakibara Y
    J Hazard Mater; 2014 Jan; 265():79-88. PubMed ID: 24333944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodecontamination of aqueous substrates from bisphenol A by ligninolytic fungi.
    Traversa A; Loffredo E; Gattullo CE; Senesi N
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(10):1407-12. PubMed ID: 22571528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of estrogenic activity of 4-tert-octylphenol by ligninolytic enzymes from white rot fungi.
    Tamagawa Y; Hirai H; Kawai S; Nishida T
    Environ Toxicol; 2007 Jun; 22(3):281-6. PubMed ID: 17497634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.