These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28964638)

  • 21. Effect of subglottic pressure on fundamental frequency of the canine larynx with active muscle tensions.
    Hsiao TY; Solomon NP; Luschei ES; Titze IR; Liu K; Fu TC; Hsu MM
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):817-21. PubMed ID: 7944175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preliminary Study of the Open Quotient in an Ex Vivo Perfused Human Larynx.
    Mendelsohn AH; Zhang Z; Luegmair G; Orestes M; Berke GS
    JAMA Otolaryngol Head Neck Surg; 2015 Aug; 141(8):751-6. PubMed ID: 26181642
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional electrical stimulation of laryngeal adductor muscle restores mobility of vocal fold and improves voice sounds in cats with unilateral laryngeal paralysis.
    Katada A; Nonaka S; Adachi M; Kunibe I; Arakawa T; Imada M; Hayashi T; Zealear DL; Harabuchi Y
    Neurosci Res; 2004 Oct; 50(2):153-9. PubMed ID: 15380322
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Noninvasive measurement of traveling wave velocity in the canine larynx.
    Nasri S; Sercarz JA; Berke GS
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):758-66. PubMed ID: 7944166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Function of the interarytenoid muscle in a canine laryngeal model.
    Nasri S; Beizai P; Sercarz JA; Kreiman J; Graves MC; Berke GS
    Ann Otol Rhinol Laryngol; 1994 Dec; 103(12):975-82. PubMed ID: 7993010
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantification of Porcine Vocal Fold Geometry.
    Stevens KA; Thomson SL; Jetté ME; Thibeault SL
    J Voice; 2016 Jul; 30(4):416-26. PubMed ID: 26292797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative Evaluation of the In Vivo Vocal Fold Medial Surface Shape.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    J Voice; 2017 Jul; 31(4):513.e15-513.e23. PubMed ID: 28089390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Control of the glottal configuration in ex vivo human models: quantitative anatomy for clinical and experimental practices.
    Lagier A; Guenoun D; Legou T; Espesser R; Giovanni A; Champsaur P
    Surg Radiol Anat; 2017 Mar; 39(3):257-262. PubMed ID: 27600801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative Measurement of the Three-dimensional Structure of the Vocal Folds and Its Application in Identifying the Type of Cricoarytenoid Joint Dislocation.
    Xu X; Wang Y; Wang J; Reiss JF; Zhou L; Jiang JJ; Zhuang P
    J Voice; 2019 Sep; 33(5):611-619. PubMed ID: 30146235
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of the ex vivo laryngeal model of phonation.
    Howard NS; Mendelsohn AH; Berke GS
    Laryngoscope; 2015 Jun; 125(6):1414-9. PubMed ID: 25647454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A three-dimensional vocal fold posturing model based on muscle mechanics and magnetic resonance imaging of a canine larynx.
    Geng B; Pham N; Xue Q; Zheng X
    J Acoust Soc Am; 2020 Apr; 147(4):2597. PubMed ID: 32359330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of vocal fold adduction on the acoustic quality of phonation: ex vivo investigations.
    Regner MF; Tao C; Ying D; Olszewski A; Zhang Y; Jiang JJ
    J Voice; 2012 Nov; 26(6):698-705. PubMed ID: 22578437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of cricothyroid and thyroarytenoid interaction on voice control: Muscle activity, vocal fold biomechanics, flow, and acoustics.
    Movahhedi M; Geng B; Xue Q; Zheng X
    J Acoust Soc Am; 2021 Jul; 150(1):29. PubMed ID: 34340476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic vocal fold parameters with changing adduction in ex-vivo hemilarynx experiments.
    Döllinger M; Berry DA; Kniesburges S
    J Acoust Soc Am; 2016 May; 139(5):2372. PubMed ID: 27250133
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A quantitative model of voice F0 control.
    Farley GR
    J Acoust Soc Am; 1994 Feb; 95(2):1017-29. PubMed ID: 8132896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phonatory vocal fold function in the excised canine larynx.
    Slavit DH; Lipton RJ; McCaffrey TV
    Otolaryngol Head Neck Surg; 1990 Dec; 103(6):947-56. PubMed ID: 2126129
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Muscular anatomy of the human ventricular folds.
    Moon J; Alipour F
    Ann Otol Rhinol Laryngol; 2013 Sep; 122(9):561-7. PubMed ID: 24224399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D multiscale imaging of human vocal folds using synchrotron X-ray microtomography in phase retrieval mode.
    Bailly L; Cochereau T; Orgéas L; Henrich Bernardoni N; Rolland du Roscoat S; McLeer-Florin A; Robert Y; Laval X; Laurencin T; Chaffanjon P; Fayard B; Boller E
    Sci Rep; 2018 Sep; 8(1):14003. PubMed ID: 30228304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A methodological study of hemilaryngeal phonation.
    Jiang JJ; Titze IR
    Laryngoscope; 1993 Aug; 103(8):872-82. PubMed ID: 8361290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Medial surface dynamics of an in vivo canine vocal fold during phonation.
    Döllinger M; Berry DA; Berke GS
    J Acoust Soc Am; 2005 May; 117(5):3174-83. PubMed ID: 15957785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.