BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28964988)

  • 1. Historical releases of mercury to air, land, and water from coal combustion.
    Streets DG; Lu Z; Levin L; Ter Schure AFH; Sunderland EM
    Sci Total Environ; 2018 Feb; 615():131-140. PubMed ID: 28964988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Total Mercury Released to the Environment by Human Activities.
    Streets DG; Horowitz HM; Jacob DJ; Lu Z; Levin L; Ter Schure AFH; Sunderland EM
    Environ Sci Technol; 2017 Jun; 51(11):5969-5977. PubMed ID: 28448134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury speciation and emissions from coal combustion in Guiyang, Southwest China.
    Tang S; Feng X; Qiu J; Yin G; Yang Z
    Environ Res; 2007 Oct; 105(2):175-82. PubMed ID: 17517388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Denitrification devices in urban boilers change mercury isotope fractionation signatures of coal combustion products.
    Yuan J; Sun R; Wang R; Fu B; Meng M; Zheng W; Chen J
    Environ Pollut; 2021 Jan; 268(Pt B):115753. PubMed ID: 33045583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions.
    Sun R; Sonke JE; Heimbürger LE; Belkin HE; Liu G; Shome D; Cukrowska E; Liousse C; Pokrovsky OS; Streets DG
    Environ Sci Technol; 2014 Jul; 48(13):7660-8. PubMed ID: 24905585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Air-substrate mercury exchange associated with landfill disposal of coal combustion products.
    Xin M; Gustin MS; Ladwig K; Pflughoeft-Hassett DF
    J Air Waste Manag Assoc; 2006 Aug; 56(8):1167-76. PubMed ID: 16933649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Historical Mercury releases from commercial products: global environmental implications.
    Horowitz HM; Jacob DJ; Amos HM; Streets DG; Sunderland EM
    Environ Sci Technol; 2014 Sep; 48(17):10242-50. PubMed ID: 25127072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Historical and future trends in global source-receptor relationships of mercury.
    Chen L; Zhang W; Zhang Y; Tong Y; Liu M; Wang H; Xie H; Wang X
    Sci Total Environ; 2018 Jan; 610-611():24-31. PubMed ID: 28802107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the potential for release of mercury from combustion product amended soils: Part 1--Simulations of beneficial use.
    Gustin MS; Ericksen J; Fernandez GC
    J Air Waste Manag Assoc; 2008 May; 58(5):673-83. PubMed ID: 18512444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of Speciated Mercury Emissions from Coal Combustion in Air and Oxygen-Enriched Environment.
    Sun Y; Lv G; Zhang H; Zhang X; Bu X; Wang X; Zhang W; Tong Y
    Bull Environ Contam Toxicol; 2019 May; 102(5):695-700. PubMed ID: 31065732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An assessment of the significance of mercury release from coal fly ash.
    Gustin MS; Ladwig K
    J Air Waste Manag Assoc; 2004 Mar; 54(3):320-30. PubMed ID: 15061613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020.
    Pacyna EG; Pacyna JM; Fudala J; Strzelecka-Jastrzab E; Hlawiczka S; Panasiuk D
    Sci Total Environ; 2006 Oct; 370(1):147-56. PubMed ID: 16887169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new method to assess mercury emissions: a study of three coal-fired electric-generating power station configurations.
    Boylan HM; Cain RD; Kingston HM
    J Air Waste Manag Assoc; 2003 Nov; 53(11):1318-25. PubMed ID: 14649751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Health and environmental impacts of increased generation of coal ash and FGD sludges. Report to the Committee on Health and Ecological Effects of Increased Coal Utilization.
    Santhanam CJ; Lunt RR; Johnson SL; Cooper CB; Thayer PS; Jones JW
    Environ Health Perspect; 1979 Dec; 33():131-57. PubMed ID: 540614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions.
    Zhang Y; Jacob DJ; Horowitz HM; Chen L; Amos HM; Krabbenhoft DP; Slemr F; St Louis VL; Sunderland EM
    Proc Natl Acad Sci U S A; 2016 Jan; 113(3):526-31. PubMed ID: 26729866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mercury in coal ash and its fate in the Indian subcontinent: A synoptic review.
    Mukherjee AB; Zevenhoven R
    Sci Total Environ; 2006 Sep; 368(1):384-92. PubMed ID: 16183102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Major sources of mercury emissions to the atmosphere: The U.S. case.
    Thanos Bourtsalas AC; Themelis NJ
    Waste Manag; 2019 Feb; 85():90-94. PubMed ID: 30803618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laboratory investigation of Hg release from flue gas desulfurization products.
    Gustin M; Ladwig K
    Environ Sci Technol; 2010 May; 44(10):4012-8. PubMed ID: 20420364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of local mercury deposition from a coal-fired power plant using mercury isotopes.
    Sherman LS; Blum JD; Keeler GJ; Demers JD; Dvonch JT
    Environ Sci Technol; 2012 Jan; 46(1):382-90. PubMed ID: 22103560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sources and trends of environmental mercury emissions in Asia.
    Wong CS; Duzgoren-Aydin NS; Aydin A; Wong MH
    Sci Total Environ; 2006 Sep; 368(2-3):649-62. PubMed ID: 16405972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.