These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28965076)

  • 1. Growth kinetic and fuel quality parameters as selective criterion for screening biodiesel producing cyanobacterial strains.
    Gayathri M; Shunmugam S; Mugasundari AV; Rahman PKSM; Muralitharan G
    Bioresour Technol; 2018 Jan; 247():453-462. PubMed ID: 28965076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and screening of heterocystous cyanobacterial strains for biodiesel production by evaluating the fuel properties from fatty acid methyl ester (FAME) profiles.
    Anahas AMP; Muralitharan G
    Bioresour Technol; 2015 May; 184():9-17. PubMed ID: 25435067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Fuel Quality Parameters and Selection of Bacteria Using PROMETHEE-GAIA Algorithm.
    Shunmugam S; Gayathri M; Muralitharan G
    Methods Mol Biol; 2019; 1995():215-227. PubMed ID: 31148132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of chemical and physico-chemical properties of cyanobacterial lipids for biodiesel production.
    Da Rós PC; Silva CS; Silva-Stenico ME; Fiore MF; De Castro HF
    Mar Drugs; 2013 Jul; 11(7):2365-81. PubMed ID: 23880929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cultivation of Nostoc sp. LS04 in municipal wastewater for biodiesel production and their deoiled biomass cellular extracts as biostimulants for Lactuca sativa growth improvement.
    Silambarasan S; Logeswari P; Sivaramakrishnan R; Kamaraj B; Lan Chi NT; Cornejo P
    Chemosphere; 2021 Oct; 280():130644. PubMed ID: 33965865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid content, biomass density, fatty acid as selection markers for evaluating the suitability of four fast growing cyanobacterial strains for biodiesel production.
    Yadav G; Sekar M; Kim SH; Geo VE; Bhatia SK; Sabir JSM; Chi NTL; Brindhadevi K; Pugazhendhi A
    Bioresour Technol; 2021 Apr; 325():124654. PubMed ID: 33461123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of filamentous heterocystous cyanobacteria for integrated pig-farm biogas slurry treatment and bioenergy production.
    Lu Y; Zhuo C; Li Y; Li H; Yang M; Xu D; He H
    Bioresour Technol; 2020 Feb; 297():122418. PubMed ID: 31761632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatty Acid Characterization and Biodiesel Production by the Marine Microalga Asteromonas gracilis: Statistical Optimization of Medium for Biomass and Lipid Enhancement.
    Fawzy MA
    Mar Biotechnol (NY); 2017 Jun; 19(3):219-231. PubMed ID: 28456869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus removal coupled to bioenergy production by three cyanobacterial isolates in a biofilm dynamic growth system.
    Gismondi A; Pippo FD; Bruno L; Antonaroli S; Congestri R
    Int J Phytoremediation; 2016 Sep; 18(9):869-76. PubMed ID: 26939844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation, Identification and High-Throughput Screening of Neutral Lipid Producing Indigenous Microalgae from South African Aquatic Habitats.
    Gumbi ST; Majeke BM; Olaniran AO; Mutanda T
    Appl Biochem Biotechnol; 2017 May; 182(1):382-399. PubMed ID: 27864781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production.
    Ma Y; Wang Z; Yu C; Yin Y; Zhou G
    Bioresour Technol; 2014 Sep; 167():503-9. PubMed ID: 25013933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-criteria analysis approach for ranking and selection of microorganisms for the production of oils for biodiesel production.
    Ahmad FB; Zhang Z; Doherty WO; O'Hara IM
    Bioresour Technol; 2015 Aug; 190():264-73. PubMed ID: 25958151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection of oleaginous yeasts with high lipid productivity for practical biodiesel production.
    Tanimura A; Takashima M; Sugita T; Endoh R; Kikukawa M; Yamaguchi S; Sakuradani E; Ogawa J; Shima J
    Bioresour Technol; 2014 Feb; 153():230-5. PubMed ID: 24368271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid Production Capacity of a Newly Characterized Cyanobacterial Strain
    Sharafi H; Fooladi J; Tabatabaei M; Momhed Heravi M; Rajabi Memari H
    Iran J Biotechnol; 2021 Jan; 19(1):e2313. PubMed ID: 34179185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass cultivation of various algal species and their evaluation as a potential candidate for lipid production.
    Sharif N; Munir N; Saleem F; Aslam F; Naz S
    Nat Prod Res; 2015; 29(20):1938-41. PubMed ID: 25675371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Identification and Comparative Evaluation of Tropical Marine Microalgae for Biodiesel Production.
    Sabu S; Bright Singh IS; Joseph V
    Mar Biotechnol (NY); 2017 Aug; 19(4):328-344. PubMed ID: 28623567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodiesel production from marine cyanobacteria cultured in plate and tubular photobioreactors.
    Selvan BK; Revathi M; Piriya PS; Vasan PT; Prabhu DI; Vennison SJ
    Indian J Exp Biol; 2013 Mar; 51(3):262-8. PubMed ID: 23678548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved biomass and lipid production in Synechocystis sp. NN using industrial wastes and nano-catalyst coupled transesterification for biodiesel production.
    Jawaharraj K; Karpagam R; Ashokkumar B; Kathiresan S; Moorthy IMG; Arumugam M; Varalakshmi P
    Bioresour Technol; 2017 Oct; 242():128-132. PubMed ID: 28366691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The application of two-step linear temperature program to thermal analysis for monitoring the lipid induction of Nostoc sp. KNUA003 in large scale cultivation.
    Kang B; Yoon HS
    Enzyme Microb Technol; 2015 Feb; 69():54-61. PubMed ID: 25640725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunolocalization of the uptake hydrogenase in the marine cyanobacterium Lyngbya majuscula CCAP 1446/4 and two Nostoc strains.
    Seabra R; Santos A; Pereira S; Moradas-Ferreira P; Tamagnini P
    FEMS Microbiol Lett; 2009 Mar; 292(1):57-62. PubMed ID: 19222582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.