These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28965160)

  • 1. Bioelectrochemical biosensor for water toxicity detection: generation of dual signals for electrochemical assay confirmation.
    Yang Y; Wang YZ; Fang Z; Yu YY; Yong YC
    Anal Bioanal Chem; 2018 Feb; 410(4):1231-1236. PubMed ID: 28965160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a mediated whole cell-based electrochemical biosensor for joint toxicity assessment of multi-pollutants using a mixed microbial consortium.
    Gao G; Qian J; Fang D; Yu Y; Zhi J
    Anal Chim Acta; 2016 Jun; 924():21-28. PubMed ID: 27181640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel colorimetric biosensor for monitoring and detecting acute toxicity in water.
    Zhai J; Yong D; Li J; Dong S
    Analyst; 2013 Jan; 138(2):702-7. PubMed ID: 23187797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system.
    Webster DP; TerAvest MA; Doud DF; Chakravorty A; Holmes EC; Radens CM; Sureka S; Gralnick JA; Angenent LT
    Biosens Bioelectron; 2014 Dec; 62():320-4. PubMed ID: 25038536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A whole-cell electrochemical biosensing system based on bacterial inward electron flow for fumarate quantification.
    Si RW; Zhai DD; Liao ZH; Gao L; Yong YC
    Biosens Bioelectron; 2015 Jun; 68():34-40. PubMed ID: 25558872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive amperometric detection of riboflavin with a whole-cell electrochemical sensor.
    Yu YY; Wang JX; Si RW; Yang Y; Zhang CL; Yong YC
    Anal Chim Acta; 2017 Sep; 985():148-154. PubMed ID: 28864185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remediation of a chlorinated aromatic hydrocarbon in water by photoelectrocatalysis.
    Nissen S; Alexander BD; Dawood I; Tillotson M; Wells RP; Macphee DE; Killham K
    Environ Pollut; 2009 Jan; 157(1):72-6. PubMed ID: 18789564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants.
    Zhu X; Wu G; Lu N; Yuan X; Li B
    J Hazard Mater; 2017 Feb; 324(Pt B):272-280. PubMed ID: 27810324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small Microbial Three-Electrode Cell Based Biosensor for Online Detection of Acute Water Toxicity.
    Yu D; Zhai J; Liu C; Zhang X; Bai L; Wang Y; Dong S
    ACS Sens; 2017 Nov; 2(11):1637-1643. PubMed ID: 29043795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New applications of genetically modified Pseudomonas aeruginosa for toxicity detection in water.
    Yu D; Yong YC; Liu C; Fang Y; Bai L; Dong S
    Chemosphere; 2017 Oct; 184():106-111. PubMed ID: 28582765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A portable instrument for monitoring acute water toxicity based on mediated electrochemical biosensor: Design, testing and evaluation.
    Yang Y; Liu Y; Chen Y; Wang Y; Shao P; Liu R; Gao G; Zhi J
    Chemosphere; 2020 Sep; 255():126964. PubMed ID: 32416391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical sensor based on chlorohemin modified molecularly imprinted microgel for determination of 2,4-dichlorophenol.
    Zhang J; Lei J; Ju H; Wang C
    Anal Chim Acta; 2013 Jul; 786():16-21. PubMed ID: 23790286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentration responses of toxicity sensor with Shewanella oneidensis MR-1 growing in bioelectrochemical systems.
    Wang X; Gao N; Zhou Q
    Biosens Bioelectron; 2013 May; 43():264-7. PubMed ID: 23333921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct monitoring of pollutants based on an electrochemical biosensor with novel peroxidase (POX1B).
    El Ichi S; Marzouki MN; Korri-Youssoufi H
    Biosens Bioelectron; 2009 Jun; 24(10):3084-90. PubMed ID: 19423328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of control mode on the sensitivity of a microbial fuel cell biosensor with Shewanella loihica PV-4 and the underlying bioelectrochemical mechanism.
    Yi Y; Xie B; Zhao T; Qian Z; Liu H
    Bioelectrochemistry; 2019 Aug; 128():109-117. PubMed ID: 30978517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel, environmentally friendly dual-signal water toxicity biosensor developed through the continuous release of Fe
    Yu D; Li R; Rong K; Fang Y; Liu L; Yu H; Dong S
    Biosens Bioelectron; 2023 Jan; 220():114864. PubMed ID: 36395734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast fabrication of reusable polyethersulfone microbial biosensors through biocompatible phase separation.
    Vigués N; Pujol-Vila F; Macanás J; Muñoz M; Muñoz-Berbel X; Mas J
    Talanta; 2020 Jan; 206():120192. PubMed ID: 31514850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lux-biosensor assessment of pH effects on microbial sorption and toxicity of chlorophenols.
    Sinclair GM; Paton GI; Meharg AA; Killham K
    FEMS Microbiol Lett; 1999 May; 174(2):273-8. PubMed ID: 10339819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ encapsulation of laccase in nanofibers by electrospinning for development of enzyme biosensors for chlorophenol monitoring.
    Liu J; Niu J; Yin L; Jiang F
    Analyst; 2011 Nov; 136(22):4802-8. PubMed ID: 21961111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of high concentration 2,4-dichlorophenol by simultaneous photocatalytic-enzymatic process using TiO2/UV and laccase.
    Jia J; Zhang S; Wang P; Wang H
    J Hazard Mater; 2012 Feb; 205-206():150-5. PubMed ID: 22236949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.