BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 28965255)

  • 1. Snowmelt timing, phenology, and growing season length in conifer forests of Crater Lake National Park, USA.
    O'Leary DS; Kellermann JL; Wayne C
    Int J Biometeorol; 2018 Feb; 62(2):273-285. PubMed ID: 28965255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities.
    Kelsey KC; Pedersen SH; Leffler AJ; Sexton JO; Feng M; Welker JM
    Glob Chang Biol; 2021 Apr; 27(8):1572-1586. PubMed ID: 33372357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divergent phenological response to hydroclimate variability in forested mountain watersheds.
    Hwang T; Band LE; Miniat CF; Song C; Bolstad PV; Vose JM; Love JP
    Glob Chang Biol; 2014 Aug; 20(8):2580-95. PubMed ID: 24677382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-year data from satellite- and ground-based sensors show details and scale matter in assessing climate's effects on wetland surface water, amphibians, and landscape conditions.
    Sadinski W; Gallant AL; Roth M; Brown J; Senay G; Brininger W; Jones PM; Stoker J
    PLoS One; 2018; 13(9):e0201951. PubMed ID: 30192764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate drives phenological reassembly of a mountain wildflower meadow community.
    Theobald EJ; Breckheimer I; HilleRisLambers J
    Ecology; 2017 Nov; 98(11):2799-2812. PubMed ID: 29023677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological consequences of earlier snowmelt from desert dust deposition in alpine landscapes.
    Steltzer H; Landry C; Painter TH; Anderson J; Ayres E
    Proc Natl Acad Sci U S A; 2009 Jul; 106(28):11629-34. PubMed ID: 19564599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Warming acts through earlier snowmelt to advance but not extend alpine community flowering.
    Jabis MD; Winkler DE; Kueppers LM
    Ecology; 2020 Sep; 101(9):e03108. PubMed ID: 32455489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Greater phenological sensitivity to temperature on higher Scottish mountains: new insights from remote sensing.
    Chapman DS
    Glob Chang Biol; 2013 Nov; 19(11):3463-71. PubMed ID: 23661383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers.
    Inouye DW
    Ecology; 2008 Feb; 89(2):353-62. PubMed ID: 18409425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 'Hearing' alpine plants growing after snowmelt: ultrasonic snow sensors provide long-term series of alpine plant phenology.
    Vitasse Y; Rebetez M; Filippa G; Cremonese E; Klein G; Rixen C
    Int J Biometeorol; 2017 Feb; 61(2):349-361. PubMed ID: 27539023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Later-melting rather than thickening of snowpack enhance the productivity and alter the community composition of temperate grassland.
    Ma W; Hu J; Zhang B; Guo J; Zhang X; Wang Z
    Sci Total Environ; 2024 May; 923():171440. PubMed ID: 38442763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Greater deciduous shrub abundance extends tundra peak season and increases modeled net CO2 uptake.
    Sweet SK; Griffin KL; Steltzer H; Gough L; Boelman NT
    Glob Chang Biol; 2015 Jun; 21(6):2394-409. PubMed ID: 25556338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Five years of phenological monitoring in a mountain grassland: inter-annual patterns and evaluation of the sampling protocol.
    Filippa G; Cremonese E; Galvagno M; Migliavacca M; Morra di Cella U; Petey M; Siniscalco C
    Int J Biometeorol; 2015 Dec; 59(12):1927-37. PubMed ID: 25933668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.
    Michelot A; Simard S; Rathgeber C; Dufrêne E; Damesin C
    Tree Physiol; 2012 Aug; 32(8):1033-45. PubMed ID: 22718524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro-climatic controls and warming effects on flowering time in alpine snowbeds.
    Carbognani M; Bernareggi G; Perucco F; Tomaselli M; Petraglia A
    Oecologia; 2016 Oct; 182(2):573-85. PubMed ID: 27299914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate and landscape drive the pace and pattern of conifer encroachment into subalpine meadows.
    Lubetkin KC; Westerling AL; Kueppers LM
    Ecol Appl; 2017 Sep; 27(6):1876-1887. PubMed ID: 28482135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States.
    Melaas EK; Friedl MA; Richardson AD
    Glob Chang Biol; 2016 Feb; 22(2):792-805. PubMed ID: 26456080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts.
    Xie Y; Wang X; Silander JA
    Proc Natl Acad Sci U S A; 2015 Nov; 112(44):13585-90. PubMed ID: 26483475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unchanged risk of frost exposure for subalpine and alpine plants after snowmelt in Switzerland despite climate warming.
    Klein G; Rebetez M; Rixen C; Vitasse Y
    Int J Biometeorol; 2018 Sep; 62(9):1755-1762. PubMed ID: 30003338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenological mismatch with abiotic conditions implications for flowering in Arctic plants.
    Wheeler HC; Høye TT; Schmidt NM; Svenning JC; Forchhammer MC
    Ecology; 2015 Mar; 96(3):775-87. PubMed ID: 26236873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.