These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 28965293)

  • 21. Automatic optic disc localization and segmentation in retinal images by a line operator and level sets.
    Ren F; Li W; Yang J; Geng H; Zhao D
    Technol Health Care; 2016 Apr; 24 Suppl 2():S767-76. PubMed ID: 27198460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An approach to locate optic disc in retinal images with pathological changes.
    Xiong L; Li H
    Comput Med Imaging Graph; 2016 Jan; 47():40-50. PubMed ID: 26650403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fundus optic disc localization and segmentation method based on phase congruency.
    Geng L; Shao YT; Xiao ZT; Zhang F; Wu J; Li M; Shan CY
    Biomed Mater Eng; 2014; 24(6):3223-9. PubMed ID: 25227031
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new and effective method for human retina optic disc segmentation with fuzzy clustering method based on active contour model.
    Abdullah AS; Rahebi J; Özok YE; Aljanabi M
    Med Biol Eng Comput; 2020 Jan; 58(1):25-37. PubMed ID: 31444623
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The automatic detection of the optic disc location in retinal images using optic disc location regression.
    Abràmoff MD; Niemeijer M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4432-5. PubMed ID: 17947087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Machine Learning Based Automatic Neovascularization Detection on Optic Disc Region.
    Yu S; Xiao D; Kanagasingam Y
    IEEE J Biomed Health Inform; 2018 May; 22(3):886-894. PubMed ID: 29727291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial attention U-Net model with Harris hawks optimization for retinal blood vessel and optic disc segmentation in fundus images.
    Kumar PR; Shilpa B; Jha RK; Chellibouina VS
    Int Ophthalmol; 2024 Aug; 44(1):359. PubMed ID: 39207645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Macula segmentation and fovea localization employing image processing and heuristic based clustering for automated retinal screening.
    R G; Balasubramanian L
    Comput Methods Programs Biomed; 2018 Jul; 160():153-163. PubMed ID: 29728242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Segmentation of retinal blood vessels by a novel hybrid technique- Principal Component Analysis (PCA) and Contrast Limited Adaptive Histogram Equalization (CLAHE).
    Sidhu RK; Sachdeva J; Katoch D
    Microvasc Res; 2023 Jul; 148():104477. PubMed ID: 36746364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An efficient optic cup segmentation method decreasing the influences of blood vessels.
    Yang C; Lu M; Duan Y; Liu B
    Biomed Eng Online; 2018 Sep; 17(1):130. PubMed ID: 30257677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optic disc detection and segmentation using saliency mask in retinal fundus images.
    Zaaboub N; Sandid F; Douik A; Solaiman B
    Comput Biol Med; 2022 Nov; 150():106067. PubMed ID: 36150251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation.
    Mookiah MR; Acharya UR; Chua CK; Min LC; Ng EY; Mushrif MM; Laude A
    Proc Inst Mech Eng H; 2013 Jan; 227(1):37-49. PubMed ID: 23516954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast detection of the main anatomical structures in digital retinal images based on intra- and inter-structure relational knowledge.
    Molina-Casado JM; Carmona EJ; García-Feijoó J
    Comput Methods Programs Biomed; 2017 Oct; 149():55-68. PubMed ID: 28802330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Obtaining optic disc center and pixel region by automatic thresholding methods on morphologically processed fundus images.
    Marin D; Gegundez-Arias ME; Suero A; Bravo JM
    Comput Methods Programs Biomed; 2015 Feb; 118(2):173-85. PubMed ID: 25433912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Localization and segmentation of optic disc in retinal images using circular Hough transform and grow-cut algorithm.
    Abdullah M; Fraz MM; Barman SA
    PeerJ; 2016; 4():e2003. PubMed ID: 27190713
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vessel-based hybrid optic disk segmentation applied to mobile phone camera retinal images.
    Khaing TT; Aimmanee P; Makhanov S; Haneishi H
    Med Biol Eng Comput; 2022 Feb; 60(2):421-437. PubMed ID: 34988764
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optic Disc and Cup Segmentation with Blood Vessel Removal from Fundus Images for Glaucoma Detection.
    Jiang Y; Xia H; Xu Y; Cheng J; Fu H; Duan L; Meng Z; Liu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():862-865. PubMed ID: 30440527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of Optic Disc Localization from Retinal Fundus Image Using Optimized Color Space.
    Toptaş B; Toptaş M; Hanbay D
    J Digit Imaging; 2022 Apr; 35(2):302-319. PubMed ID: 35018540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An adaptive threshold based image processing technique for improved glaucoma detection and classification.
    Issac A; Partha Sarathi M; Dutta MK
    Comput Methods Programs Biomed; 2015 Nov; 122(2):229-44. PubMed ID: 26321351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accurate and efficient optic disc detection and segmentation by a circular transformation.
    Lu S
    IEEE Trans Med Imaging; 2011 Dec; 30(12):2126-33. PubMed ID: 21843983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.