These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 28965293)

  • 41. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning.
    Mitra A; Banerjee PS; Roy S; Roy S; Setua SK
    Comput Methods Programs Biomed; 2018 Oct; 165():25-35. PubMed ID: 30337079
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MSGANet-RAV: A multiscale guided attention network for artery-vein segmentation and classification from optic disc and retinal images.
    Chowdhury AZME; Mann G; Morgan WH; Vukmirovic A; Mehnert A; Sohel F
    J Optom; 2022; 15 Suppl 1(Suppl 1):S58-S69. PubMed ID: 36396540
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Patch-Based Output Space Adversarial Learning for Joint Optic Disc and Cup Segmentation.
    Wang S; Yu L; Yang X; Fu CW; Heng PA
    IEEE Trans Med Imaging; 2019 Nov; 38(11):2485-2495. PubMed ID: 30794170
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques.
    Aquino A; Gegundez-Arias ME; Marin D
    IEEE Trans Med Imaging; 2010 Nov; 29(11):1860-9. PubMed ID: 20562037
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fully Convolutional Networks for Monocular Retinal Depth Estimation and Optic Disc-Cup Segmentation.
    Shankaranarayana SM; Ram K; Mitra K; Sivaprakasam M
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1417-1426. PubMed ID: 30762573
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automated segmentation of optic disc using statistical region merging and morphological operations.
    Nija KS; Anupama CP; Gopi VP; Anitha VS
    Phys Eng Sci Med; 2020 Sep; 43(3):857-869. PubMed ID: 32557248
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation.
    Fu H; Cheng J; Xu Y; Wong DWK; Liu J; Cao X
    IEEE Trans Med Imaging; 2018 Jul; 37(7):1597-1605. PubMed ID: 29969410
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Blood vessel segmentation in color fundus images based on regional and Hessian features.
    Shah SAA; Tang TB; Faye I; Laude A
    Graefes Arch Clin Exp Ophthalmol; 2017 Aug; 255(8):1525-1533. PubMed ID: 28474130
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sector-based optic cup segmentation with intensity and blood vessel priors.
    Yin F; Liu J; Wong DW; Tan NM; Cheng J; Cheng CY; Tham YC; Wong TY
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1454-7. PubMed ID: 23366175
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Disc-Aware Ensemble Network for Glaucoma Screening From Fundus Image.
    Fu H; Cheng J; Xu Y; Zhang C; Wong DWK; Liu J; Cao X
    IEEE Trans Med Imaging; 2018 Nov; 37(11):2493-2501. PubMed ID: 29994764
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Global and Local Enhanced Residual U-Net for Accurate Retinal Vessel Segmentation.
    Lian S; Li L; Lian G; Xiao X; Luo Z; Li S
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(3):852-862. PubMed ID: 31095493
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Deep-Learning Approach for Automated OCT En-Face Retinal Vessel Segmentation in Cases of Optic Disc Swelling Using Multiple En-Face Images as Input.
    Islam MS; Wang JK; Johnson SS; Thurtell MJ; Kardon RH; Garvin MK
    Transl Vis Sci Technol; 2020 Mar; 9(2):17. PubMed ID: 32821471
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Automated localization of retinal features.
    Sekhar S; Abd El-Samie FE; Yu P; Al-Nuaimy W; Nandi AK
    Appl Opt; 2011 Jul; 50(19):3064-75. PubMed ID: 21743504
    [TBL] [Abstract][Full Text] [Related]  

  • 54. JointRCNN: A Region-Based Convolutional Neural Network for Optic Disc and Cup Segmentation.
    Jiang Y; Duan L; Cheng J; Gu Z; Xia H; Fu H; Li C; Liu J
    IEEE Trans Biomed Eng; 2020 Feb; 67(2):335-343. PubMed ID: 31021760
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optic Disc Segmentation from Retinal Fundus Images via Deep Object Detection Networks.
    Sun X; Xu Y; Zhao W; You T; Liu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5954-5957. PubMed ID: 30441692
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure-Preserving Guided Retinal Image Filtering and Its Application for Optic Disk Analysis.
    Cheng J; Li Z; Gu Z; Fu H; Wong DWK; Liu J
    IEEE Trans Med Imaging; 2018 Nov; 37(11):2536-2546. PubMed ID: 29994522
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Segmentation of optic disc and optic cup in retinal fundus images using shape regression.
    Sedai S; Roy PK; Mahapatra D; Garnavi R
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3260-3264. PubMed ID: 28269003
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Automated segmentation of optic disc region on retinal fundus photographs: Comparison of contour modeling and pixel classification methods.
    Muramatsu C; Nakagawa T; Sawada A; Hatanaka Y; Hara T; Yamamoto T; Fujita H
    Comput Methods Programs Biomed; 2011 Jan; 101(1):23-32. PubMed ID: 20546966
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Robust Hidden Markov Model based intelligent blood vessel detection of fundus images.
    Hassan M; Amin M; Murtza I; Khan A; Chaudhry A
    Comput Methods Programs Biomed; 2017 Nov; 151():193-201. PubMed ID: 28947001
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optic nerve head segmentation.
    Lowell J; Hunter A; Steel D; Basu A; Ryder R; Fletcher E; Kennedy L
    IEEE Trans Med Imaging; 2004 Feb; 23(2):256-64. PubMed ID: 14964569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.