These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 28965293)
61. Automatic Optic Disc Detection in Color Retinal Images by Local Feature Spectrum Analysis. Zhou W; Wu H; Wu C; Yu X; Yi Y Comput Math Methods Med; 2018; 2018():1942582. PubMed ID: 30013614 [TBL] [Abstract][Full Text] [Related]
62. Approximate nearest neighbour field based optic disk detection. Ramakanth SA; Babu RV Comput Med Imaging Graph; 2014 Jan; 38(1):49-56. PubMed ID: 24290957 [TBL] [Abstract][Full Text] [Related]
63. A new approach to optic disc detection in human retinal images using the firefly algorithm. Rahebi J; Hardalaç F Med Biol Eng Comput; 2016 Mar; 54(2-3):453-61. PubMed ID: 26093773 [TBL] [Abstract][Full Text] [Related]
64. Leveraging Multiscale Hessian-Based Enhancement With a Novel Exudate Inpainting Technique for Retinal Vessel Segmentation. Annunziata R; Garzelli A; Ballerini L; Mecocci A; Trucco E IEEE J Biomed Health Inform; 2016 Jul; 20(4):1129-38. PubMed ID: 26054078 [TBL] [Abstract][Full Text] [Related]
65. Optic Disc and Cup Segmentation in Retinal Images for Glaucoma Diagnosis by Locally Statistical Active Contour Model with Structure Prior. Zhou W; Yi Y; Gao Y; Dai J Comput Math Methods Med; 2019; 2019():8973287. PubMed ID: 31827591 [TBL] [Abstract][Full Text] [Related]
66. Detection of glaucomatous change based on vessel shape analysis. Matsopoulos GK; Asvestas PA; Delibasis KK; Mouravliansky NA; Zeyen TG Comput Med Imaging Graph; 2008 Apr; 32(3):183-92. PubMed ID: 18187308 [TBL] [Abstract][Full Text] [Related]
67. Superpixel classification for initialization in model based optic disc segmentation. Cheng J; Liu J; Xu Y; Yin F; Wong DW; Lee BH; Cheung C; Aung T; Wong TY Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1450-3. PubMed ID: 23366174 [TBL] [Abstract][Full Text] [Related]
68. Towards Accurate Segmentation of Retinal Vessels and the Optic Disc in Fundoscopic Images with Generative Adversarial Networks. Son J; Park SJ; Jung KH J Digit Imaging; 2019 Jun; 32(3):499-512. PubMed ID: 30291477 [TBL] [Abstract][Full Text] [Related]
69. Retinal image registration based on multiscale products and optic disc detection. Koukounis D; Nicholson L; Bull DR; Achim A Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6242-5. PubMed ID: 22255765 [TBL] [Abstract][Full Text] [Related]
70. Accurate and reliable segmentation of the optic disc in digital fundus images. Giachetti A; Ballerini L; Trucco E J Med Imaging (Bellingham); 2014 Jul; 1(2):024001. PubMed ID: 26158034 [TBL] [Abstract][Full Text] [Related]
71. Learning-based approach for the automatic detection of the optic disc in digital retinal fundus photographs. Wong DK; Liu J; Tan NM; Yin F; Lee BH; Wong TY Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5355-8. PubMed ID: 21096259 [TBL] [Abstract][Full Text] [Related]
72. Model-based optic nerve head segmentation on retinal fundus images. Yin F; Liu J; Ong SH; Sun Y; Wong DW; Tan NM; Cheung C; Baskaran M; Aung T; Wong TY Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2626-9. PubMed ID: 22254880 [TBL] [Abstract][Full Text] [Related]
73. A Unified Optic Nerve Head and Optic Cup Segmentation Using Unsupervised Neural Networks for Glaucoma Screening. Ghassabi Z; Shanbehzadeh J; Nouri-Mahdavi K Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5942-5945. PubMed ID: 30441689 [TBL] [Abstract][Full Text] [Related]
74. Automatic detection of optic disc based on PCA and mathematical morphology. Morales S; Naranjo V; Angulo U; Alcaniz M IEEE Trans Med Imaging; 2013 Apr; 32(4):786-96. PubMed ID: 23314772 [TBL] [Abstract][Full Text] [Related]
75. [Optic cup and disc segmentation model based on linear attention and dual attention]. Lan Z; Xie J; Guo Y; Zhang Z; Sun B Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Oct; 40(5):920-927. PubMed ID: 37879921 [TBL] [Abstract][Full Text] [Related]
76. Automated segmentation of the optic disc from stereo color photographs using physiologically plausible features. Abràmoff MD; Alward WL; Greenlee EC; Shuba L; Kim CY; Fingert JH; Kwon YH Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1665-73. PubMed ID: 17389498 [TBL] [Abstract][Full Text] [Related]
77. Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Sinthanayothin C; Boyce JF; Cook HL; Williamson TH Br J Ophthalmol; 1999 Aug; 83(8):902-10. PubMed ID: 10413690 [TBL] [Abstract][Full Text] [Related]
78. A robust method for the automatic location of the optic disc and the fovea in fundus images. Romero-Oraá R; García M; Oraá-Pérez J; López MI; Hornero R Comput Methods Programs Biomed; 2020 Nov; 196():105599. PubMed ID: 32574904 [TBL] [Abstract][Full Text] [Related]
79. Automated segmentation of optic disc in SD-OCT images and cup-to-disc ratios quantification by patch searching-based neural canal opening detection. Wu M; Leng T; de Sisternes L; Rubin DL; Chen Q Opt Express; 2015 Nov; 23(24):31216-29. PubMed ID: 26698750 [TBL] [Abstract][Full Text] [Related]
80. Detection of new vessels on the optic disc using retinal photographs. Goatman KA; Fleming AD; Philip S; Williams GJ; Olson JA; Sharp PF IEEE Trans Med Imaging; 2011 Apr; 30(4):972-9. PubMed ID: 21156389 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]