BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28965346)

  • 1. Impact of 5 Days of Sprint Training in Hypoxia on Performance and Muscle Energy Substances.
    Kasai N; Kojima C; Sumi D; Takahashi H; Goto K; Suzuki Y
    Int J Sports Med; 2017 Nov; 38(13):983-991. PubMed ID: 28965346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Six Consecutive Days of Sprint Training in Hypoxia on Performance in Competitive Sprint Runners.
    Kasai N; Mizuno S; Ishimoto S; Sakamoto E; Maruta M; Kurihara T; Kurosawa Y; Goto K
    J Strength Cond Res; 2019 Jan; 33(1):36-43. PubMed ID: 28445224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Augmented muscle glycogen utilization following a single session of sprint training in hypoxia.
    Kasai N; Tanji F; Ishibashi A; Ohnuma H; Takahashi H; Goto K; Suzuki Y
    Eur J Appl Physiol; 2021 Nov; 121(11):2981-2991. PubMed ID: 34228222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. No Improved Performance With Repeated-Sprint Training in Hypoxia Versus Normoxia: A Double-Blind and Crossover Study.
    Montero D; Lundby C
    Int J Sports Physiol Perform; 2017 Feb; 12(2):161-167. PubMed ID: 27140941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repeated sprint training under hypoxia improves aerobic performance and repeated sprint ability by enhancing muscle deoxygenation and markers of angiogenesis in rugby sevens.
    Pramkratok W; Songsupap T; Yimlamai T
    Eur J Appl Physiol; 2022 Mar; 122(3):611-622. PubMed ID: 34977961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-intensity intermittent training in hypoxia: a double-blinded, placebo-controlled field study in youth football players.
    Brocherie F; Girard O; Faiss R; Millet GP
    J Strength Cond Res; 2015 Jan; 29(1):226-37. PubMed ID: 24978836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repeated double-poling sprint training in hypoxia by competitive cross-country skiers.
    Faiss R; Willis S; Born DP; Sperlich B; Vesin JM; Holmberg HC; Millet GP
    Med Sci Sports Exerc; 2015 Apr; 47(4):809-17. PubMed ID: 25083727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans.
    Bogdanis GC; Nevill ME; Lakomy HK; Boobis LH
    Acta Physiol Scand; 1998 Jul; 163(3):261-72. PubMed ID: 9715738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle metabolism during sprint exercise in man: influence of sprint training.
    Barnett C; Carey M; Proietto J; Cerin E; Febbraio MA; Jenkins D
    J Sci Med Sport; 2004 Sep; 7(3):314-22. PubMed ID: 15518296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of inserted long rest periods during repeated sprint exercise on performance adaptation.
    Ikutomo A; Kasai N; Goto K
    Eur J Sport Sci; 2018 Feb; 18(1):47-53. PubMed ID: 29032729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Running mechanical alterations during repeated treadmill sprints in hot versus hypoxic environments. A pilot study.
    Girard O; Brocherie F; Morin JB; Millet GP
    J Sports Sci; 2016; 34(12):1190-8. PubMed ID: 26473996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significant molecular and systemic adaptations after repeated sprint training in hypoxia.
    Faiss R; Léger B; Vesin JM; Fournier PE; Eggel Y; Dériaz O; Millet GP
    PLoS One; 2013; 8(2):e56522. PubMed ID: 23437154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal muscle signaling, metabolism, and performance during sprint exercise in severe acute hypoxia after the ingestion of antioxidants.
    Morales-Alamo D; Guerra B; Ponce-González JG; Guadalupe-Grau A; Santana A; Martin-Rincon M; Gelabert-Rebato M; Cadefau JA; Cusso R; Dorado C; Calbet JAL
    J Appl Physiol (1985); 2017 Nov; 123(5):1235-1245. PubMed ID: 28819003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of combined resisted agility and repeated sprint training vs. strength training on female elite soccer players.
    Shalfawi SA; Haugen T; Jakobsen TA; Enoksen E; Tønnessen E
    J Strength Cond Res; 2013 Nov; 27(11):2966-72. PubMed ID: 23442286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exercise Performance, Muscle Oxygen Extraction and Blood Cell Mitochondrial Respiration after Repeated-Sprint and Sprint Interval Training in Hypoxia: A Pilot Study.
    Gatterer H; Menz V; Salazar-Martinez E; Sumbalova Z; Garcia-Souza LF; Velika B; Gnaiger E; Burtscher M
    J Sports Sci Med; 2018 Sep; 17(3):339-347. PubMed ID: 30116106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeated-sprint training in hypoxia induced by voluntary hypoventilation improves running repeated-sprint ability in rugby players.
    Fornasier-Santos C; Millet GP; Woorons X
    Eur J Sport Sci; 2018 May; 18(4):504-512. PubMed ID: 29400616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repeated-Sprint Training in Hypoxia in International Rugby Union Players.
    Beard A; Ashby J; Chambers R; Brocherie F; Millet GP
    Int J Sports Physiol Perform; 2019 Jul; 14(6):850–854. PubMed ID: 30569787
    [No Abstract]   [Full Text] [Related]  

  • 18. Repeated-sprint ability - part II: recommendations for training.
    Bishop D; Girard O; Mendez-Villanueva A
    Sports Med; 2011 Sep; 41(9):741-56. PubMed ID: 21846163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct Effects of Repeated-Sprint Training in Normobaric Hypoxia and β-Alanine Supplementation.
    Wang R; Fukuda DH; Hoffman JR; La Monica MB; Starling TM; Stout JR; Kang J; Hu Y
    J Am Coll Nutr; 2019 Feb; 38(2):149-161. PubMed ID: 30277420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in performance, muscle metabolites, enzymes and fibre types after short sprint training.
    Dawson B; Fitzsimons M; Green S; Goodman C; Carey M; Cole K
    Eur J Appl Physiol Occup Physiol; 1998 Jul; 78(2):163-9. PubMed ID: 9694316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.