These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 28965898)
21. Interobserver and intraobserver variability in determining breast density according to the fifth edition of the BI-RADS® Atlas. Pesce K; Tajerian M; Chico MJ; Swiecicki MP; Boietti B; Frangella MJ; Benitez S Radiologia (Engl Ed); 2020; 62(6):481-486. PubMed ID: 32493654 [TBL] [Abstract][Full Text] [Related]
22. Quantra™ should be considered a tool for two-grade scale mammographic breast density classification. Ekpo EU; McEntee MF; Rickard M; Brennan PC; Kunduri J; Demchig D; Mello-Thoms C Br J Radiol; 2016; 89(1060):20151057. PubMed ID: 26882045 [TBL] [Abstract][Full Text] [Related]
23. Inter-observer variability in mammographic density assessment using Royal Australian and New Zealand College of Radiologists (RANZCR) synoptic scales. Damases CN; Mello-Thoms C; McEntee MF J Med Imaging Radiat Oncol; 2016 Jun; 60(3):329-36. PubMed ID: 27059785 [TBL] [Abstract][Full Text] [Related]
24. Using breast radiographers' reports as a second opinion for radiologists' readings of microcalcifications in digital mammography. Tanaka R; Takamori M; Uchiyama Y; Nishikawa RM; Shiraishi J Br J Radiol; 2015 Mar; 88(1047):20140565. PubMed ID: 25536443 [TBL] [Abstract][Full Text] [Related]
25. A Reliability Comparison of Cone-Beam Breast Computed Tomography and Mammography: Breast Density Assessment Referring to the Fifth Edition of the BI-RADS Atlas. Ma Y; Cao Y; Liu A; Yin L; Han P; Li H; Zhang X; Ye Z Acad Radiol; 2019 Jun; 26(6):752-759. PubMed ID: 30220584 [TBL] [Abstract][Full Text] [Related]
27. Mammographic density assessment: comparison of radiologists, automated volumetric measurement, and artificial intelligence-based computer-assisted diagnosis. Eom HJ; Cha JH; Choi WJ; Cho SM; Jin K; Kim HH Acta Radiol; 2024 Jul; 65(7):708-715. PubMed ID: 38825883 [TBL] [Abstract][Full Text] [Related]
28. Comparison of variability in breast density assessment by BI-RADS category according to the level of experience. Eom HJ; Cha JH; Kang JW; Choi WJ; Kim HJ; Go E Acta Radiol; 2018 May; 59(5):527-532. PubMed ID: 28766978 [TBL] [Abstract][Full Text] [Related]
29. Variability of Breast Density Classification Between US and UK Radiologists. Alomaim W; O'Leary D; Ryan J; Rainford L; Evanoff M; Foley S J Med Imaging Radiat Sci; 2019 Mar; 50(1):53-61. PubMed ID: 30777249 [TBL] [Abstract][Full Text] [Related]
30. Automated Volumetric Breast Density Measurements in the Era of the BI-RADS Fifth Edition: A Comparison With Visual Assessment. Youk JH; Gweon HM; Son EJ; Kim JA AJR Am J Roentgenol; 2016 May; 206(5):1056-62. PubMed ID: 26934689 [TBL] [Abstract][Full Text] [Related]
31. Reproducibility of visual assessment on mammographic density. Gao J; Warren R; Warren-Forward H; Forbes JF Breast Cancer Res Treat; 2008 Mar; 108(1):121-7. PubMed ID: 17616811 [TBL] [Abstract][Full Text] [Related]
32. Comparison of subjective and fully automated methods for measuring mammographic density. Moshina N; Roman M; Sebuødegård S; Waade GG; Ursin G; Hofvind S Acta Radiol; 2018 Feb; 59(2):154-160. PubMed ID: 28565960 [TBL] [Abstract][Full Text] [Related]
33. Automated Breast Density Assessment in MRI Using Deep Learning and Radiomics: Strategies for Reducing Inter-Observer Variability. Jing X; Wielema M; Monroy-Gonzalez AG; Stams TRG; Mahesh SVK; Oudkerk M; Sijens PE; Dorrius MD; van Ooijen PMA J Magn Reson Imaging; 2024 Jul; 60(1):80-91. PubMed ID: 37846440 [TBL] [Abstract][Full Text] [Related]
34. Inter- and intra-observer agreement of BI-RADS-based subjective visual estimation of amount of fibroglandular breast tissue with magnetic resonance imaging: comparison to automated quantitative assessment. Wengert GJ; Helbich TH; Woitek R; Kapetas P; Clauser P; Baltzer PA; Vogl WD; Weber M; Meyer-Baese A; Pinker K Eur Radiol; 2016 Nov; 26(11):3917-3922. PubMed ID: 27108300 [TBL] [Abstract][Full Text] [Related]
35. Effect of Training on Qualitative Mammographic Density Assessment. Raza S; Mackesy MM; Winkler NS; Hurwitz S; Birdwell RL J Am Coll Radiol; 2016 Mar; 13(3):310-5. PubMed ID: 26944039 [TBL] [Abstract][Full Text] [Related]
36. Inter- and intra-observer variability of qualitative visual breast-composition assessment in mammography among Japanese physicians: a first multi-institutional observer performance study in Japan. Koyama Y; Nakashima K; Orihara S; Tsunoda H; Kimura F; Uenaka N; Ban K; Michishita Y; Kanemaki Y; Kurihara A; Tawaraya K; Taguri M; Ishikawa T; Uematsu T Breast Cancer; 2024 Jul; 31(4):671-683. PubMed ID: 38619787 [TBL] [Abstract][Full Text] [Related]
37. Comparison Between Digital and Synthetic 2D Mammograms in Breast Density Interpretation. Alshafeiy TI; Wadih A; Nicholson BT; Rochman CM; Peppard HR; Patrie JT; Harvey JA AJR Am J Roentgenol; 2017 Jul; 209(1):W36-W41. PubMed ID: 28504593 [TBL] [Abstract][Full Text] [Related]
38. Reader variability in reporting breast imaging according to BI-RADS assessment categories (the Florence experience). Ciatto S; Houssami N; Apruzzese A; Bassetti E; Brancato B; Carozzi F; Catarzi S; Lamberini MP; Marcelli G; Pellizzoni R; Pesce B; Risso G; Russo F; Scorsolini A Breast; 2006 Feb; 15(1):44-51. PubMed ID: 16076556 [TBL] [Abstract][Full Text] [Related]
39. Mammographic density estimation: comparison among BI-RADS categories, a semi-automated software and a fully automated one. Tagliafico A; Tagliafico G; Tosto S; Chiesa F; Martinoli C; Derchi LE; Calabrese M Breast; 2009 Feb; 18(1):35-40. PubMed ID: 19010678 [TBL] [Abstract][Full Text] [Related]
40. Mammographic Breast Density Assessment Using Deep Learning: Clinical Implementation. Lehman CD; Yala A; Schuster T; Dontchos B; Bahl M; Swanson K; Barzilay R Radiology; 2019 Jan; 290(1):52-58. PubMed ID: 30325282 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]