These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
554 related articles for article (PubMed ID: 28966053)
21. Proteome analysis of the dystrophin-deficient MDX diaphragm reveals a drastic increase in the heat shock protein cvHSP. Doran P; Martin G; Dowling P; Jockusch H; Ohlendieck K Proteomics; 2006 Aug; 6(16):4610-21. PubMed ID: 16835851 [TBL] [Abstract][Full Text] [Related]
25. Proteomic analysis of dystrophic muscle. Lewis C; Doran P; Ohlendieck K Methods Mol Biol; 2012; 798():357-69. PubMed ID: 22130847 [TBL] [Abstract][Full Text] [Related]
26. Targeted inhibition of Ca2+ /calmodulin signaling exacerbates the dystrophic phenotype in mdx mouse muscle. Chakkalakal JV; Michel SA; Chin ER; Michel RN; Jasmin BJ Hum Mol Genet; 2006 May; 15(9):1423-35. PubMed ID: 16551657 [TBL] [Abstract][Full Text] [Related]
27. Metabolic profile of dystrophic mdx mouse muscles analyzed with in vitro magnetic resonance spectroscopy (MRS). Martins-Bach AB; Bloise AC; Vainzof M; Rahnamaye Rabbani S Magn Reson Imaging; 2012 Oct; 30(8):1167-76. PubMed ID: 22673895 [TBL] [Abstract][Full Text] [Related]
28. Decrease of myofiber branching via muscle-specific expression of the olfactory receptor mOR23 in dystrophic muscle leads to protection against mechanical stress. Pichavant C; Burkholder TJ; Pavlath GK Skelet Muscle; 2016; 6():2. PubMed ID: 26798450 [TBL] [Abstract][Full Text] [Related]
29. Proteomic profiling of the mouse diaphragm and refined mass spectrometric analysis of the dystrophic phenotype. Murphy S; Zweyer M; Raucamp M; Henry M; Meleady P; Swandulla D; Ohlendieck K J Muscle Res Cell Motil; 2019 Mar; 40(1):9-28. PubMed ID: 30888583 [TBL] [Abstract][Full Text] [Related]
30. Multiomics analysis of the mdx/mTR mouse model of Duchenne muscular dystrophy. Van Pelt DW; Kharaz YA; Sarver DC; Eckhardt LR; Dzierzawski JT; Disser NP; Piacentini AN; Comerford E; McDonagh B; Mendias CL Connect Tissue Res; 2021 Jan; 62(1):24-39. PubMed ID: 32664808 [TBL] [Abstract][Full Text] [Related]
31. Proteomic analysis of dystrophin deficiency and associated changes in the aged mdx-4cv heart model of dystrophinopathy-related cardiomyopathy. Murphy S; Dowling P; Zweyer M; Mundegar RR; Henry M; Meleady P; Swandulla D; Ohlendieck K J Proteomics; 2016 Aug; 145():24-36. PubMed ID: 26961938 [TBL] [Abstract][Full Text] [Related]
32. Taurine deficiency, synthesis and transport in the mdx mouse model for Duchenne Muscular Dystrophy. Terrill JR; Grounds MD; Arthur PG Int J Biochem Cell Biol; 2015 Sep; 66():141-8. PubMed ID: 26239309 [TBL] [Abstract][Full Text] [Related]
33. Expression patterns of regulatory RNAs, including lncRNAs and tRNAs, during postnatal growth of normal and dystrophic (mdx) mouse muscles, and their response to taurine treatment. Butchart LC; Terrill JR; Rossetti G; White R; Filipovska A; Grounds MD Int J Biochem Cell Biol; 2018 Jun; 99():52-63. PubMed ID: 29578051 [TBL] [Abstract][Full Text] [Related]
34. Comparative Label-Free Mass Spectrometric Analysis of Mildly versus Severely Affected mdx Mouse Skeletal Muscles Identifies Annexin, Lamin, and Vimentin as Universal Dystrophic Markers. Holland A; Henry M; Meleady P; Winkler CK; Krautwald M; Brinkmeier H; Ohlendieck K Molecules; 2015 Jun; 20(6):11317-44. PubMed ID: 26102067 [TBL] [Abstract][Full Text] [Related]
35. In dystrophic Debruin D; McRae NL; Addinsall AB; McCulloch DR; Barker RG; Debrincat D; Hayes A; Murphy RM; Stupka N Am J Physiol Cell Physiol; 2024 Oct; 327(4):C1035-C1050. PubMed ID: 39159389 [TBL] [Abstract][Full Text] [Related]
36. Diaphragm degeneration and cardiac structure in mdx mouse: potential clinical implications for Duchenne muscular dystrophy. Barbin IC; Pereira JA; Bersan Rovere M; de Oliveira Moreira D; Marques MJ; Santo Neto H J Anat; 2016 May; 228(5):784-91. PubMed ID: 26822140 [TBL] [Abstract][Full Text] [Related]
37. Pre-clinical evaluation of N-acetylcysteine reveals side effects in the mdx mouse model of Duchenne muscular dystrophy. Pinniger GJ; Terrill JR; Assan EB; Grounds MD; Arthur PG J Physiol; 2017 Dec; 595(23):7093-7107. PubMed ID: 28887840 [TBL] [Abstract][Full Text] [Related]
38. Low intensity training of mdx mice reduces carbonylation and increases expression levels of proteins involved in energy metabolism and muscle contraction. Hyzewicz J; Tanihata J; Kuraoka M; Ito N; Miyagoe-Suzuki Y; Takeda S Free Radic Biol Med; 2015 May; 82():122-36. PubMed ID: 25660994 [TBL] [Abstract][Full Text] [Related]
39. Identification of disease specific pathways using in vivo SILAC proteomics in dystrophin deficient mdx mouse. Rayavarapu S; Coley W; Cakir E; Jahnke V; Takeda S; Aoki Y; Grodish-Dressman H; Jaiswal JK; Hoffman EP; Brown KJ; Hathout Y; Nagaraju K Mol Cell Proteomics; 2013 May; 12(5):1061-73. PubMed ID: 23297347 [TBL] [Abstract][Full Text] [Related]
40. Treadmill running and mechanical overloading improved the strength of the plantaris muscle in the dystrophin-desmin double knockout (DKO) mouse. Moutachi D; Hyzewicz J; Roy P; Lemaitre M; Bachasson D; Amthor H; Ritvos O; Li Z; Furling D; Agbulut O; Ferry A J Physiol; 2024 Aug; 602(15):3641-3660. PubMed ID: 38980963 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]