BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 28966109)

  • 1. Canonical modeling of anticipatory vaccination behavior and long term epidemic recurrence.
    Flaig J; Houy N; Michel P
    J Theor Biol; 2018 Jan; 436():26-38. PubMed ID: 28966109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cost effectiveness and policy announcement: The case of measles mandatory vaccination.
    Flaig J; Houy N; Michel P
    J Theor Biol; 2020 Jan; 485():110028. PubMed ID: 31568787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epidemic prevalence information on social networks can mediate emergent collective outcomes in voluntary vaccine schemes.
    Sharma A; Menon SN; Sasidevan V; Sinha S
    PLoS Comput Biol; 2019 May; 15(5):e1006977. PubMed ID: 31120877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can influenza epidemics be prevented by voluntary vaccination?
    Vardavas R; Breban R; Blower S
    PLoS Comput Biol; 2007 May; 3(5):e85. PubMed ID: 17480117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of word-of-mouth for programs of voluntary vaccination: A game-theoretic approach.
    Bhattacharyya S; Bauch CT; Breban R
    Math Biosci; 2015 Nov; 269():130-4. PubMed ID: 26367185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expected utility of voluntary vaccination in the middle of an emergent Bluetongue virus serotype 8 epidemic: a decision analysis parameterized for Dutch circumstances.
    Sok J; Hogeveen H; Elbers AR; Velthuis AG; Oude Lansink AG
    Prev Vet Med; 2014 Aug; 115(3-4):75-87. PubMed ID: 24768508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic equilibria in an epidemic model with voluntary vaccinations.
    Chen FH; Cottrell A
    J Biol Dyn; 2009 Jul; 3(4):357-75. PubMed ID: 22876938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voluntary vaccination strategy and the spread of sexually transmitted diseases.
    Xu F; Cressman R
    Math Biosci; 2016 Apr; 274():94-107. PubMed ID: 26877073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal vaccination strategies and rational behaviour in seasonal epidemics.
    Doutor P; Rodrigues P; Soares MD; Chalub FA
    J Math Biol; 2016 Dec; 73(6-7):1437-1465. PubMed ID: 27048430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erratic flu vaccination emerges from short-sighted behavior in contact networks.
    Cornforth DM; Reluga TC; Shim E; Bauch CT; Galvani AP; Meyers LA
    PLoS Comput Biol; 2011 Jan; 7(1):e1001062. PubMed ID: 21298083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simulation analysis to characterize the dynamics of vaccinating behaviour on contact networks.
    Perisic A; Bauch CT
    BMC Infect Dis; 2009 May; 9():77. PubMed ID: 19476616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal control of vaccination dynamics during an influenza epidemic.
    Jaberi-Douraki M; Moghadas SM
    Math Biosci Eng; 2014 Oct; 11(5):1045-63. PubMed ID: 25347806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A game dynamic model for delayer strategies in vaccinating behaviour for pediatric infectious diseases.
    Bhattacharyya S; Bauch CT
    J Theor Biol; 2010 Dec; 267(3):276-82. PubMed ID: 20831873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of behavioral response and vaccination policy on epidemic spreading--an approach based on evolutionary-game dynamics.
    Zhang HF; Wu ZX; Tang M; Lai YC
    Sci Rep; 2014 Jul; 4():5666. PubMed ID: 25011424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disease control through voluntary vaccination decisions based on the smoothed best response.
    Xu F; Cressman R
    Comput Math Methods Med; 2014; 2014():825734. PubMed ID: 24693329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the potential of learning methods and recurrent dynamic model with vaccination: A comparative case study of COVID-19 in Austria, Brazil, and China.
    Rakhshan SA; Zaj M; Ghane FH; Nejad MS
    Phys Rev E; 2024 Jan; 109(1-1):014212. PubMed ID: 38366403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal dynamics of the Ebola epidemic in Guinea and implications for vaccination and disease elimination: a computational modeling analysis.
    Ajelli M; Merler S; Fumanelli L; Pastore Y Piontti A; Dean NE; Longini IM; Halloran ME; Vespignani A
    BMC Med; 2016 Sep; 14(1):130. PubMed ID: 27600737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulse vaccination strategy in the SIR epidemic model.
    Shulgin B; Stone L; Agur Z
    Bull Math Biol; 1998 Nov; 60(6):1123-48. PubMed ID: 9866452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multigeneration reproduction ratios and the effects of clustered unvaccinated individuals on epidemic outbreak.
    Hiebeler DE; Michaud IJ; Ackerman HH; Reed Iosevich S; Robinson A
    Bull Math Biol; 2011 Dec; 73(12):3047-70. PubMed ID: 21544676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact on Epidemic Measles of Vaccination Campaigns Triggered by Disease Outbreaks or Serosurveys: A Modeling Study.
    Lessler J; Metcalf CJ; Cutts FT; Grenfell BT
    PLoS Med; 2016 Oct; 13(10):e1002144. PubMed ID: 27727285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.