BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 28966275)

  • 1. Antileishmanial Thioureas: Synthesis, Biological Activity and in Silico Evaluations of New Promising Derivatives.
    Viana GM; Soares DC; Santana MV; do Amaral LH; Meireles PW; Nunes RP; da Silva LCRP; Aguiar LCS; Rodrigues CR; de Sousa VP; Castro HC; Abreu PA; Sathler PC; Saraiva EM; Cabral LM
    Chem Pharm Bull (Tokyo); 2017; 65(10):911-919. PubMed ID: 28966275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel steroid derivatives: synthesis, antileishmanial activity, mechanism of action, and in silico physicochemical and pharmacokinetics studies.
    da Trindade Granato J; Dos Santos JA; Calixto SL; Prado da Silva N; da Silva Martins J; da Silva AD; Coimbra ES
    Biomed Pharmacother; 2018 Oct; 106():1082-1090. PubMed ID: 30119174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leishmanicidal activity of lipophilic extracts of some Hypericum species.
    Dagnino AP; Barros FM; Ccana-Ccapatinta GV; Prophiro JS; Poser GL; Romão PR
    Phytomedicine; 2015 Jan; 22(1):71-6. PubMed ID: 25636874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solidagenone acts on promastigotes of L. amazonensis by inducing apoptosis-like processes on intracellular amastigotes by IL-12p70/ROS/NO pathway activation.
    Bortoleti BTDS; Gonçalves MD; Tomiotto-Pellissier F; Contato VM; Silva TF; de Matos RLN; Detoni MB; Rodrigues ACJ; Carloto AC; Lazarin DB; Arakawa NS; Costa IN; Conchon-Costa I; Miranda-Sapla MM; Wowk PF; Pavanelli WR
    Phytomedicine; 2021 May; 85():153536. PubMed ID: 33765552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quinoline derivatives: Synthesis, leishmanicidal activity and involvement of mitochondrial oxidative stress as mechanism of action.
    Coimbra ES; Antinarelli LM; Silva NP; Souza IO; Meinel RS; Rocha MN; Soares RP; da Silva AD
    Chem Biol Interact; 2016 Dec; 260():50-57. PubMed ID: 27789199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro evaluation of cytotoxicity and leishmanicidal activity of phthalimido-thiazole derivatives.
    Aliança ASDS; Oliveira AR; Feitosa APS; Ribeiro KRC; de Castro MCAB; Leite ACL; Alves LC; Brayner FA
    Eur J Pharm Sci; 2017 Jul; 105():1-10. PubMed ID: 28478133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An effective in vitro and in vivo antileishmanial activity and mechanism of action of 8-hydroxyquinoline against Leishmania species causing visceral and tegumentary leishmaniasis.
    Costa Duarte M; dos Reis Lage LM; Lage DP; Mesquita JT; Salles BC; Lavorato SN; Menezes-Souza D; Roatt BM; Alves RJ; Tavares CA; Tempone AG; Coelho EA
    Vet Parasitol; 2016 Feb; 217():81-8. PubMed ID: 26827866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 4-Aminoquinoline Derivatives as Potential Antileishmanial Agents.
    Antinarelli LM; Dias RM; Souza IO; Lima WP; Gameiro J; da Silva AD; Coimbra ES
    Chem Biol Drug Des; 2015 Oct; 86(4):704-14. PubMed ID: 25682728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antileishmanial activity and cytotoxicity of Brazilian plants.
    Ribeiro TG; Chávez-Fumagalli MA; Valadares DG; Franca JR; Lage PS; Duarte MC; Andrade PH; Martins VT; Costa LE; Arruda AL; Faraco AA; Coelho EA; Castilho RO
    Exp Parasitol; 2014 Aug; 143():60-8. PubMed ID: 24846006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grandiflorenic acid promotes death of promastigotes via apoptosis-like mechanism and affects amastigotes by increasing total iron bound capacity.
    Bortoleti BTDS; Gonçalves MD; Tomiotto-Pellissier F; Miranda-Sapla MM; Assolini JP; Carloto ACM; de Carvalho PGC; Cardoso ILA; Simão ANC; Arakawa NS; Costa IN; Conchon-Costa I; Pavanelli WR
    Phytomedicine; 2018 Jul; 46():11-20. PubMed ID: 30097110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antileishmanial activity of Eugenol-rich essential oil from Ocimum gratissimum.
    Ueda-Nakamura T; Mendonça-Filho RR; Morgado-Díaz JA; Korehisa Maza P; Prado Dias Filho B; Aparício Garcia Cortez D; Alviano DS; Rosa Mdo S; Lopes AH; Alviano CS; Nakamura CV
    Parasitol Int; 2006 Jun; 55(2):99-105. PubMed ID: 16343984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive review of chalcone derivatives as antileishmanial agents.
    de Mello MVP; Abrahim-Vieira BA; Domingos TFS; de Jesus JB; de Sousa ACC; Rodrigues CR; Souza AMT
    Eur J Med Chem; 2018 Apr; 150():920-929. PubMed ID: 29602038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leishmanicidal activity of synthetic chalcones in Leishmania (Viannia) braziliensis.
    de Mello TF; Bitencourt HR; Pedroso RB; Aristides SM; Lonardoni MV; Silveira TG
    Exp Parasitol; 2014 Jan; 136():27-34. PubMed ID: 24269198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and leishmanicidal activity of eugenol derivatives bearing 1,2,3-triazole functionalities.
    Teixeira RR; Gazolla PAR; da Silva AM; Borsodi MPG; Bergmann BR; Ferreira RS; Vaz BG; Vasconcelos GA; Lima WP
    Eur J Med Chem; 2018 Feb; 146():274-286. PubMed ID: 29407957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N, N', N″-trisubstituted guanidines: Synthesis, characterization and evaluation of their leishmanicidal activity.
    do Espírito Santo RD; Velásquez ÁMA; Passianoto LVG; Sepulveda AAL; da Costa Clementino L; Assis RP; Baviera AM; Kalaba P; Dos Santos FN; Éberlin MN; da Silva GVJ; Zehl M; Lubec G; Graminha MAS; González ERP
    Eur J Med Chem; 2019 Jun; 171():116-128. PubMed ID: 30913526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2-Amino-thiophene derivatives present antileishmanial activity mediated by apoptosis and immunomodulation in vitro.
    Rodrigues KA; Dias CN; Néris PL; Rocha Jda C; Scotti MT; Scotti L; Mascarenhas SR; Veras RC; de Medeiros IA; Keesen Tde S; de Oliveira TB; de Lima Mdo C; Balliano TL; de Aquino TM; de Moura RO; Mendonça Junior FJ; de Oliveira MR
    Eur J Med Chem; 2015 Dec; 106():1-14. PubMed ID: 26513640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric Oxide Induction in Peritoneal Macrophages by a 1,2,3-Triazole Derivative Improves Its Efficacy upon
    Almeida-Souza F; da Silva VD; Taniwaki NN; Hardoim DJ; Mendonça Filho AR; Moreira WFF; Buarque CD; Calabrese KDS; Abreu-Silva AL
    J Med Chem; 2021 Sep; 64(17):12691-12704. PubMed ID: 34427442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, cytotoxicity, and antileishmanial activity of N,N'-disubstituted ethylenediamine and imidazolidine derivatives.
    de Carvalho GS; Machado PA; de Paula DT; Coimbra ES; da Silva AD
    ScientificWorldJournal; 2010 Sep; 10():1723-30. PubMed ID: 20842318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticles Loaded with a New Thiourea Derivative: Development and
    Meireles PW; de Souza DPB; Rezende MG; Borsodi MPG; de Oliveira DE; da Silva LCRP; de Souza AMT; Viana GM; Rodrigues CR; do Carmo FA; de Sousa VP; Rossi-Bergmann B; Cabral LM
    Curr Drug Deliv; 2020; 17(8):694-702. PubMed ID: 32621717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aryl thiosemicarbazones: In vitro and immunomodulatory activities against L. amazonensis.
    da Silva AC; Dos Santos TAR; da Silva IVB; de Oliveira MVG; Moreira DRM; Leite ACL; Pereira VRA
    Exp Parasitol; 2017 Jun; 177():57-65. PubMed ID: 28433563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.