BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 28966596)

  • 1. Impact of Resistance Training on Skeletal Muscle Mitochondrial Biogenesis, Content, and Function.
    Groennebaek T; Vissing K
    Front Physiol; 2017; 8():713. PubMed ID: 28966596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal Muscle Mitochondrial Protein Synthesis and Respiration Increase With Low-Load Blood Flow Restricted as Well as High-Load Resistance Training.
    Groennebaek T; Jespersen NR; Jakobsgaard JE; Sieljacks P; Wang J; Rindom E; Musci RV; Bøtker HE; Hamilton KL; Miller BF; de Paoli FV; Vissing K
    Front Physiol; 2018; 9():1796. PubMed ID: 30618808
    [No Abstract]   [Full Text] [Related]  

  • 3. Six Weeks of Low-Load Blood Flow Restricted and High-Load Resistance Exercise Training Produce Similar Increases in Cumulative Myofibrillar Protein Synthesis and Ribosomal Biogenesis in Healthy Males.
    Sieljacks P; Wang J; Groennebaek T; Rindom E; Jakobsgaard JE; Herskind J; Gravholt A; Møller AB; Musci RV; de Paoli FV; Hamilton KL; Miller BF; Vissing K
    Front Physiol; 2019; 10():649. PubMed ID: 31191347
    [No Abstract]   [Full Text] [Related]  

  • 4. Aerobic Adaptations to Resistance Training: The Role of Time under Tension.
    Mang ZA; Ducharme JB; Mermier C; Kravitz L; de Castro Magalhaes F; Amorim F
    Int J Sports Med; 2022 Sep; 43(10):829-839. PubMed ID: 35088396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle.
    Fiorenza M; Gunnarsson TP; Hostrup M; Iaia FM; Schena F; Pilegaard H; Bangsbo J
    J Physiol; 2018 Jul; 596(14):2823-2840. PubMed ID: 29727016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle.
    Chen CCW; Erlich AT; Hood DA
    Skelet Muscle; 2018 Mar; 8(1):10. PubMed ID: 29549884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood flow restricted resistance exercise and reductions in oxygen tension attenuate mitochondrial H
    Petrick HL; Pignanelli C; Barbeau PA; Churchward-Venne TA; Dennis KMJH; van Loon LJC; Burr JF; Goossens GH; Holloway GP
    J Physiol; 2019 Aug; 597(15):3985-3997. PubMed ID: 31194254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of mitochondrial biogenesis in muscle by endurance exercise.
    Irrcher I; Adhihetty PJ; Joseph AM; Ljubicic V; Hood DA
    Sports Med; 2003; 33(11):783-93. PubMed ID: 12959619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myocellular Adaptations to Low-Load Blood Flow Restricted Resistance Training.
    Vissing K; Groennebaek T; Wernbom M; Aagaard P; Raastad T
    Exerc Sport Sci Rev; 2020 Oct; 48(4):180-187. PubMed ID: 32658044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal Muscle Ribosome and Mitochondrial Biogenesis in Response to Different Exercise Training Modalities.
    Mesquita PHC; Vann CG; Phillips SM; McKendry J; Young KC; Kavazis AN; Roberts MD
    Front Physiol; 2021; 12():725866. PubMed ID: 34646153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skeletal muscle metabolic adaptations to endurance exercise training are attainable in mice with simvastatin treatment.
    Southern WM; Nichenko AS; Shill DD; Spencer CC; Jenkins NT; McCully KK; Call JA
    PLoS One; 2017; 12(2):e0172551. PubMed ID: 28207880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endurance Exercise and the Regulation of Skeletal Muscle Metabolism.
    Booth FW; Ruegsegger GN; Toedebusch RG; Yan Z
    Prog Mol Biol Transl Sci; 2015; 135():129-51. PubMed ID: 26477913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pleiotropic effect of physical exercise on mitochondrial dynamics in aging skeletal muscle.
    Barbieri E; Agostini D; Polidori E; Potenza L; Guescini M; Lucertini F; Annibalini G; Stocchi L; De Santi M; Stocchi V
    Oxid Med Cell Longev; 2015; 2015():917085. PubMed ID: 25945152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression in skeletal muscle of coronary artery disease patients after concentric and eccentric endurance training.
    Zoll J; Steiner R; Meyer K; Vogt M; Hoppeler H; Flück M
    Eur J Appl Physiol; 2006 Mar; 96(4):413-22. PubMed ID: 16311763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle-specific knockout of general control of amino acid synthesis 5 (GCN5) does not enhance basal or endurance exercise-induced mitochondrial adaptation.
    Dent JR; Martins VF; Svensson K; LaBarge SA; Schlenk NC; Esparza MC; Buckner EH; Meyer GA; Hamilton DL; Schenk S; Philp A
    Mol Metab; 2017 Dec; 6(12):1574-1584. PubMed ID: 29111103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological adaptations to interval training and the role of exercise intensity.
    MacInnis MJ; Gibala MJ
    J Physiol; 2017 May; 595(9):2915-2930. PubMed ID: 27748956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal muscle mitochondrial protein synthesis and respiration in response to the energetic stress of an ultra-endurance race.
    Konopka AR; Castor WM; Wolff CA; Musci RV; Reid JJ; Laurin JL; Valenti ZJ; Hamilton KL; Miller BF
    J Appl Physiol (1985); 2017 Dec; 123(6):1516-1524. PubMed ID: 28883046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity of skeletal muscle mitochondria: structure and function.
    Hoppeler H; Fluck M
    Med Sci Sports Exerc; 2003 Jan; 35(1):95-104. PubMed ID: 12544642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Skeletal Muscle Mitochondrial Adaptations Following Resistance Exercise Training.
    Parry HA; Roberts MD; Kavazis AN
    Int J Sports Med; 2020 Jun; 41(6):349-359. PubMed ID: 32162291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle protein turnover in endurance training: a review.
    Seene T; Kaasik P; Alev K
    Int J Sports Med; 2011 Dec; 32(12):905-11. PubMed ID: 22068931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.