BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28966853)

  • 1.
    Bizheva K; Tan B; MacLellan B; Hosseinaee Z; Mason E; Hileeto D; Sorbara L
    Biomed Opt Express; 2017 Sep; 8(9):4141-4151. PubMed ID: 28966853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Line-scanning SD-OCT for
    Han L; Tan B; Hosseinaee Z; Chen LK; Hileeto D; Bizheva K
    Biomed Opt Express; 2022 Jul; 13(7):4007-4020. PubMed ID: 35991928
    [No Abstract]   [Full Text] [Related]  

  • 3. In vivo imaging of palisades of Vogt in dry eye versus normal subjects using en-face spectral-domain optical coherence tomography.
    Ghouali W; Tahiri Joutei Hassani R; Djerada Z; Liang H; El Sanharawi M; Labbé A; Baudouin C
    PLoS One; 2017; 12(11):e0187864. PubMed ID: 29176786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Comparative analysis of the value of information provided by anterior segment optical coherence tomography and confocal laser scanning microscopy for identifying the palisades of Vogt in normal limbus].
    Pashtaev NP; Pozdeeva NA; Voskresenskaya AA; Gagloev BV; Shipunov AA
    Vestn Oftalmol; 2017; 133(1):60-69. PubMed ID: 28291202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo volumetric imaging of the human corneo-scleral limbus with spectral domain OCT.
    Bizheva K; Hutchings N; Sorbara L; Moayed AA; Simpson T
    Biomed Opt Express; 2011 Jul; 2(7):1794-02. PubMed ID: 21750758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between the existence of the palisades of Vogt and limbal epithelial thickness in limbal stem cell deficiency.
    Le Q; Yang Y; Deng SX; Xu J
    Clin Exp Ophthalmol; 2017 Apr; 45(3):224-231. PubMed ID: 27591548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for quantifying limbal stem cell niches using OCT imaging.
    Haagdorens M; Behaegel J; Rozema J; Van Gerwen V; Michiels S; Ní Dhubhghaill S; Tassignon MJ; Zakaria N
    Br J Ophthalmol; 2017 Sep; 101(9):1250-1255. PubMed ID: 28228408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical and morphological manifestations of aniridia-associated keratopathy on anterior segment optical coherence tomography and in vivo confocal microscopy.
    Voskresenskaya A; Pozdeyeva N; Vasilyeva T; Batkov Y; Shipunov A; Gagloev B; Zinchenko R
    Ocul Surf; 2017 Oct; 15(4):759-769. PubMed ID: 28698011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral-domain optical coherence tomography for evaluating palisades of Vogt in ocular surface disorders with limbal involvement.
    Chen YY; Sun YC; Tsai CY; Chu HS; Wu JH; Chang HW; Chen WL
    Sci Rep; 2021 Jun; 11(1):12502. PubMed ID: 34127762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between vessel diameter and depth measurements within the limbus using ultra-high resolution optical coherence tomography.
    Alabi E; Hutchings N; Bizheva K; Simpson T
    J Optom; 2018; 11(1):57-65. PubMed ID: 28629902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying the Palisades of Vogt in Human Ex Vivo Tissue.
    Sigal IA; Steele J; Drexler S; Lathrop KL
    Ocul Surf; 2016 Oct; 14(4):435-439. PubMed ID: 27520448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using optical coherence tomography to assess the role of age and region in corneal epithelium and palisades of vogt.
    Lin HC; Tew TB; Hsieh YT; Lin SY; Chang HW; Hu FR; Chen WL
    Medicine (Baltimore); 2016 Aug; 95(35):e4234. PubMed ID: 27583846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical coherence tomography as a rapid, accurate, noncontact method of visualizing the palisades of Vogt.
    Lathrop KL; Gupta D; Kagemann L; Schuman JS; Sundarraj N
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1381-7. PubMed ID: 22266521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Coherence Tomography Imaging of the Palisades of Vogt to Assist Clinical Evaluation and Surgical Planning in a Case of Limbal Stem-Cell Deficiency.
    Espandar L; Steele JF; Lathrop KL
    Eye Contact Lens; 2017 Sep; 43(5):e19-e21. PubMed ID: 26783982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [In vivo imaging of limbal epithelium and palisades of Vogt].
    Falke K; Prakasam RK; Guthoff RF; Stachs O
    Klin Monbl Augenheilkd; 2012 Dec; 229(12):1185-90. PubMed ID: 23258669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional structure of the mammalian limbal stem cell niche.
    Grieve K; Ghoubay D; Georgeon C; Thouvenin O; Bouheraoua N; Paques M; Borderie VM
    Exp Eye Res; 2015 Nov; 140():75-84. PubMed ID: 26297801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the Effects of Pterygium and Aging on Limbal Structure Using Optical Coherence Tomography.
    Li S; Yu H; Wang P; Feng Y
    J Clin Med; 2022 Oct; 11(19):. PubMed ID: 36233745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Diagnostic capabilities of optical coherence tomography and confocal laser scanning microscopy in studying manifestations of aniridia-associated keratopathy].
    Voskresenskaya AA; Pozdeeva NA; Vasil'eva TA; Gagloev BV; Shipunov AA; Zinchenko RA
    Vestn Oftalmol; 2017; 133(6):30-44. PubMed ID: 29319667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sub-micrometer axial resolution OCT for
    Bizheva K; Tan B; MacLelan B; Kralj O; Hajialamdari M; Hileeto D; Sorbara L
    Biomed Opt Express; 2017 Feb; 8(2):800-812. PubMed ID: 28270986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrahigh-resolution OCT imaging of the human cornea.
    Werkmeister RM; Sapeta S; Schmidl D; Garhöfer G; Schmidinger G; Aranha Dos Santos V; Aschinger GC; Baumgartner I; Pircher N; Schwarzhans F; Pantalon A; Dua H; Schmetterer L
    Biomed Opt Express; 2017 Feb; 8(2):1221-1239. PubMed ID: 28271013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.