These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 28967051)
1. Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. Trevisan F; Calignano F; Aversa A; Marchese G; Lombardi M; Biamino S; Ugues D; Manfredi D J Appl Biomater Funct Mater; 2018 Apr; 16(2):57-67. PubMed ID: 28967051 [TBL] [Abstract][Full Text] [Related]
2. A Comparison of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting. Wang H; Zhao B; Liu C; Wang C; Tan X; Hu M PLoS One; 2016; 11(7):e0158513. PubMed ID: 27391895 [TBL] [Abstract][Full Text] [Related]
3. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry. Tamayo JA; Riascos M; Vargas CA; Baena LM Heliyon; 2021 May; 7(5):e06892. PubMed ID: 34027149 [TBL] [Abstract][Full Text] [Related]
4. Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting. Shah FA; Omar O; Suska F; Snis A; Matic A; Emanuelsson L; Norlindh B; Lausmaa J; Thomsen P; Palmquist A Acta Biomater; 2016 May; 36():296-309. PubMed ID: 27000553 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the mechanical and physicochemical properties of Ti-6Al-4 V discs obtained by selective laser melting and subtractive manufacturing method. da Costa Valente ML; de Oliveira TT; Kreve S; Batalha RL; de Oliveira DP; Pauly S; Bolfarini C; Bachmann L; Dos Reis AC J Biomed Mater Res B Appl Biomater; 2021 Mar; 109(3):420-427. PubMed ID: 32815312 [TBL] [Abstract][Full Text] [Related]
6. Microstructure and mechanical properties of porous titanium structures fabricated by electron beam melting for cranial implants. Moiduddin K Proc Inst Mech Eng H; 2018 Feb; 232(2):185-199. PubMed ID: 29332500 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of titanium alloy frameworks for complete dentures by selective laser melting. Kanazawa M; Iwaki M; Minakuchi S; Nomura N J Prosthet Dent; 2014 Dec; 112(6):1441-7. PubMed ID: 25258261 [TBL] [Abstract][Full Text] [Related]
8. In vitro cytotoxicity and surface topography evaluation of additive manufacturing titanium implant materials. Tuomi JT; Björkstrand RV; Pernu ML; Salmi MV; Huotilainen EI; Wolff JE; Vallittu PK; Mäkitie AA J Mater Sci Mater Med; 2017 Mar; 28(3):53. PubMed ID: 28197824 [TBL] [Abstract][Full Text] [Related]
9. Complex geometry and integrated macro-porosity: Clinical applications of electron beam melting to fabricate bespoke bone-anchored implants. Palmquist A; Jolic M; Hryha E; Shah FA Acta Biomater; 2023 Jan; 156():125-145. PubMed ID: 35675890 [TBL] [Abstract][Full Text] [Related]
10. Research Status and Prospect of Additive Manufactured Nickel-Titanium Shape Memory Alloys. Wen S; Gan J; Li F; Zhou Y; Yan C; Shi Y Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443019 [TBL] [Abstract][Full Text] [Related]
11. Directionally-Dependent Mechanical Properties of Ti6Al4V Manufactured by Electron Beam Melting (EBM) and Selective Laser Melting (SLM). Pasang T; Tavlovich B; Yannay O; Jackson B; Fry M; Tao Y; Turangi C; Wang JC; Jiang CP; Sato Y; Tsukamoto M; Misiolek WZ Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34203344 [TBL] [Abstract][Full Text] [Related]
12. The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting. Habijan T; Haberland C; Meier H; Frenzel J; Wittsiepe J; Wuwer C; Greulich C; Schildhauer TA; Köller M Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):419-26. PubMed ID: 25428090 [TBL] [Abstract][Full Text] [Related]
13. Selective laser melting of titanium alloy enables osseointegration of porous multi-rooted implants in a rabbit model. Peng W; Xu L; You J; Fang L; Zhang Q Biomed Eng Online; 2016 Jul; 15(1):85. PubMed ID: 27439427 [TBL] [Abstract][Full Text] [Related]
14. A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Sarraf M; Rezvani Ghomi E; Alipour S; Ramakrishna S; Liana Sukiman N Biodes Manuf; 2022; 5(2):371-395. PubMed ID: 34721937 [TBL] [Abstract][Full Text] [Related]
15. Additive manufacturing of titanium-based alloys- A review of methods, properties, challenges, and prospects. Tshephe TS; Akinwamide SO; Olevsky E; Olubambi PA Heliyon; 2022 Mar; 8(3):e09041. PubMed ID: 35299605 [TBL] [Abstract][Full Text] [Related]
16. Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison. Speirs M; Van Hooreweder B; Van Humbeeck J; Kruth JP J Mech Behav Biomed Mater; 2017 Jun; 70():53-59. PubMed ID: 28162939 [TBL] [Abstract][Full Text] [Related]
18. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders. Fischer M; Joguet D; Robin G; Peltier L; Laheurte P Mater Sci Eng C Mater Biol Appl; 2016 May; 62():852-9. PubMed ID: 26952492 [TBL] [Abstract][Full Text] [Related]
19. In vitro dermal and epidermal cellular response to titanium alloy implants fabricated with electron beam melting. Springer JC; Harrysson OL; Marcellin-Little DJ; Bernacki SH Med Eng Phys; 2014 Oct; 36(10):1367-72. PubMed ID: 25080895 [TBL] [Abstract][Full Text] [Related]
20. Osseointegration of three-dimensional designed titanium implants manufactured by selective laser melting. Shaoki A; Xu JY; Sun H; Chen XS; Ouyang J; Zhuang XM; Deng FL Biofabrication; 2016 Oct; 8(4):045014. PubMed ID: 27788123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]