These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Taniguchi N; Fujibayashi S; Takemoto M; Sasaki K; Otsuki B; Nakamura T; Matsushita T; Kokubo T; Matsuda S Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():690-701. PubMed ID: 26652423 [TBL] [Abstract][Full Text] [Related]
23. Additive Manufacturing Technologies of High Entropy Alloys (HEA): Review and Prospects. Ron T; Shirizly A; Aghion E Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984333 [TBL] [Abstract][Full Text] [Related]
24. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo. Zhao B; Wang H; Qiao N; Wang C; Hu M Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):832-841. PubMed ID: 27770961 [TBL] [Abstract][Full Text] [Related]
25. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs. Sing SL; An J; Yeong WY; Wiria FE J Orthop Res; 2016 Mar; 34(3):369-85. PubMed ID: 26488900 [TBL] [Abstract][Full Text] [Related]
26. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Nicula R; Lüthen F; Stir M; Nebe B; Burkel E Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173 [TBL] [Abstract][Full Text] [Related]
27. Potentiality of the "Gum Metal" titanium-based alloy for biomedical applications. Gordin DM; Ion R; Vasilescu C; Drob SI; Cimpean A; Gloriant T Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():362-70. PubMed ID: 25280716 [TBL] [Abstract][Full Text] [Related]
28. Progress in Additive Manufacturing of Magnesium Alloys: A Review. Chen J; Chen B Materials (Basel); 2024 Aug; 17(15):. PubMed ID: 39124514 [TBL] [Abstract][Full Text] [Related]
29. Mechanical stability of custom-made implants: Numerical study of anatomical device and low elastic Young's modulus alloy. Didier P; Piotrowski B; Fischer M; Laheurte P Mater Sci Eng C Mater Biol Appl; 2017 May; 74():399-409. PubMed ID: 28254310 [TBL] [Abstract][Full Text] [Related]
30. A Review on Design and Mechanical Properties of Additively Manufactured NiTi Implants for Orthopedic Applications. Zhang Y; Attarilar S; Wang L; Lu W; Yang J; Fu Y Int J Bioprint; 2021; 7(2):340. PubMed ID: 33997434 [TBL] [Abstract][Full Text] [Related]
31. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing. Wauthle R; Ahmadi SM; Amin Yavari S; Mulier M; Zadpoor AA; Weinans H; Van Humbeeck J; Kruth JP; Schrooten J Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():94-100. PubMed ID: 26046272 [TBL] [Abstract][Full Text] [Related]
32. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy. do Prado RF; Esteves GC; Santos ELS; Bueno DAG; Cairo CAA; Vasconcellos LGO; Sagnori RS; Tessarin FBP; Oliveira FE; Oliveira LD; Villaça-Carvalho MFL; Henriques VAR; Carvalho YR; De Vasconcellos LMR PLoS One; 2018; 13(5):e0196169. PubMed ID: 29771925 [TBL] [Abstract][Full Text] [Related]
33. Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL. Matena J; Petersen S; Gieseke M; Teske M; Beyerbach M; Kampmann A; Murua Escobar H; Gellrich NC; Haferkamp H; Nolte I Int J Mol Sci; 2015 Jun; 16(6):13287-301. PubMed ID: 26068455 [TBL] [Abstract][Full Text] [Related]
34. In vitro biocompatibility of titanium alloy discs made using direct metal fabrication. Haslauer CM; Springer JC; Harrysson OL; Loboa EG; Monteiro-Riviere NA; Marcellin-Little DJ Med Eng Phys; 2010 Jul; 32(6):645-52. PubMed ID: 20447856 [TBL] [Abstract][Full Text] [Related]
35. A Study of the Structural Characteristics of Titanium Alloy Products Manufactured Using Additive Technologies by Combining the Selective Laser Melting and Direct Metal Deposition Methods. Samodurova M; Logachev I; Shaburova N; Samoilova O; Radionova L; Zakirov R; Pashkeev K; Myasoedov V; Trofimov E Materials (Basel); 2019 Oct; 12(19):. PubMed ID: 31597287 [TBL] [Abstract][Full Text] [Related]
36. Long-term biocompatibility and osseointegration of electron beam melted, free-form-fabricated solid and porous titanium alloy: experimental studies in sheep. Palmquist A; Snis A; Emanuelsson L; Browne M; Thomsen P J Biomater Appl; 2013 May; 27(8):1003-16. PubMed ID: 22207608 [TBL] [Abstract][Full Text] [Related]
37. Synthesis and characterization of Ti-27.5Nb alloy made by CLAD® additive manufacturing process for biomedical applications. Fischer M; Laheurte P; Acquier P; Joguet D; Peltier L; Petithory T; Anselme K; Mille P Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():341-348. PubMed ID: 28415471 [TBL] [Abstract][Full Text] [Related]
38. Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting. Van Hooreweder B; Apers Y; Lietaert K; Kruth JP Acta Biomater; 2017 Jan; 47():193-202. PubMed ID: 27717912 [TBL] [Abstract][Full Text] [Related]
39. Advances in Nickel-Containing High-Entropy Alloys: From Fundamentals to Additive Manufacturing. Gupta AK; Choudhari A; Rane A; Tiwari A; Sharma P; Gupta A; Sapale P; Tirumala RTA; Muthaiah R; Kumar A Materials (Basel); 2024 Aug; 17(15):. PubMed ID: 39124490 [TBL] [Abstract][Full Text] [Related]
40. Advancing of Additive-Manufactured Titanium Implants with Bioinspired Micro- to Nanotopographies. Maher S; Wijenayaka AR; Lima-Marques L; Yang D; Atkins GJ; Losic D ACS Biomater Sci Eng; 2021 Feb; 7(2):441-450. PubMed ID: 33492936 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]