These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 28967147)

  • 1. Optical clearing of small intestine for three-dimensional visualization of cellular proliferation within crypts.
    Kaufman JA; Castro MJ; Sandoval-Skeet N; Al-Nakkash L
    J Anat; 2018 Jan; 232(1):152-157. PubMed ID: 28967147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis reveals Ce3D as optimal clearing method for in toto imaging of the mouse intestine.
    Bossolani GDP; Pintelon I; Detrez JD; Buckinx R; Thys S; Zanoni JN; De Vos WH; Timmermans JP
    Neurogastroenterol Motil; 2019 May; 31(5):e13560. PubMed ID: 30761698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clearing, immunofluorescence, and confocal microscopy for the three-dimensional imaging of murine testes and study of testis biology.
    Kaufman JA; Castro MJ; Ruiz SA; Jentarra GM; Chavira B; Rodriguez-Sosa JR
    J Struct Biol; 2020 Mar; 209(3):107449. PubMed ID: 31931124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue Clearing and Deep Imaging of the Kidney Using Confocal and Two-Photon Microscopy.
    Jafree DJ; Long DA; Scambler PJ; Moulding D
    Methods Mol Biol; 2020; 2067():103-126. PubMed ID: 31701448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sample preparation for high-resolution 3D confocal imaging of mouse skeletal tissue.
    Kusumbe AP; Ramasamy SK; Starsichova A; Adams RH
    Nat Protoc; 2015 Dec; 10(12):1904-14. PubMed ID: 26513669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simplified three-dimensional tissue clearing and incorporation of colorimetric phenotyping.
    Sung K; Ding Y; Ma J; Chen H; Huang V; Cheng M; Yang CF; Kim JT; Eguchi D; Di Carlo D; Hsiai TK; Nakano A; Kulkarni RP
    Sci Rep; 2016 Aug; 6():30736. PubMed ID: 27498769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimised tissue clearing minimises distortion and destruction during tissue delipidation.
    Lee K; Lai HM; Soerensen MH; Hui ES; Ma VW; Cho WC; Ho YS; Chang RC
    Neuropathol Appl Neurobiol; 2021 Apr; 47(3):441-453. PubMed ID: 33107057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A qualitative comparison of ten tissue clearing techniques.
    Orlich M; Kiefer F
    Histol Histopathol; 2018 Feb; 33(2):181-199. PubMed ID: 28497438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtome-free 3-dimensional confocal imaging method for visualization of mouse intestine with subcellular-level resolution.
    Fu YY; Lin CW; Enikolopov G; Sibley E; Chiang AS; Tang SC
    Gastroenterology; 2009 Aug; 137(2):453-65. PubMed ID: 19447107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EyeCi: Optical clearing and imaging of immunolabeled mouse eyes using light-sheet fluorescence microscopy.
    Henning Y; Osadnik C; Malkemper EP
    Exp Eye Res; 2019 Mar; 180():137-145. PubMed ID: 30578790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative assessment of optical clearing methods on formalin-fixed human lymphoid tissue.
    Schega Y; Flinner N; Hansmann ML
    Pathol Res Pract; 2020 Nov; 216(11):153136. PubMed ID: 32823235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophobic and Hydrogel-Based Methods for Passive Tissue Clearing.
    Jalufka FL; Min SW; Platt ME; Pritchard AL; Margo TE; Vernino AO; Kirchhoff MA; Massopust RT; McCreedy DA
    Methods Mol Biol; 2022; 2440():197-209. PubMed ID: 35218541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UbasM: An effective balanced optical clearing method for intact biomedical imaging.
    Chen L; Li G; Li Y; Li Y; Zhu H; Tang L; French P; McGinty J; Ruan S
    Sci Rep; 2017 Sep; 7(1):12218. PubMed ID: 28939860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional imaging of small intestine morphology using non-linear optical microscopy and endogenous signals.
    Ricard C; Vacca B; Weber P
    J Anat; 2012 Sep; 221(3):279-83. PubMed ID: 22697278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An advanced optical clearing protocol allows label-free detection of tissue necrosis
    Schneidereit D; Bröllochs A; Ritter P; Kreiß L; Mokhtari Z; Beilhack A; Krönke G; Ackermann JA; Faas M; Grüneboom A; Schürmann S; Friedrich O
    Theranostics; 2021; 11(6):2876-2891. PubMed ID: 33456578
    [No Abstract]   [Full Text] [Related]  

  • 16. Validation of an easily applicable three-dimensional immunohistochemical imaging method for a mouse brain using conventional confocal microscopy.
    Kakimoto T
    Histochem Cell Biol; 2018 Jan; 149(1):97-103. PubMed ID: 29052755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy.
    Dickie R; Bachoo RM; Rupnick MA; Dallabrida SM; Deloid GM; Lai J; Depinho RA; Rogers RA
    Microvasc Res; 2006; 72(1-2):20-6. PubMed ID: 16806289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast free of acrylamide clearing tissue (FACT) for clearing, immunolabelling and three-dimensional imaging of partridge tissues.
    Mohammad Rezazadeh F; Saedi S; Rahmanifar F; Namavar MR; Dianatpour M; Tanideh N; Akhlaghi A; Niazi A; Arabi Monfared A; Tsutsui K; Jafarzadeh Shirazi MR; Tamadon A
    Microsc Res Tech; 2018 Dec; 81(12):1374-1382. PubMed ID: 30431686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical clearing facilitates integrated 3D visualization of mouse ileal microstructure and vascular network with high definition.
    Fu YY; Tang SC
    Microvasc Res; 2010 Dec; 80(3):512-21. PubMed ID: 20600164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of the optical transparency of rodent tissues by modified PACT-based passive clearing.
    Woo J; Lee M; Seo JM; Park HS; Cho YE
    Exp Mol Med; 2016 Dec; 48(12):e274. PubMed ID: 27909337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.