These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28967655)

  • 1. Aluminium nanopillars reduce thermal conductivity of silicon nanobeams.
    Anufriev R; Yanagisawa R; Nomura M
    Nanoscale; 2017 Oct; 9(39):15083-15088. PubMed ID: 28967655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent and Incoherent Impacts of Nanopillars on the Thermal Conductivity in Silicon Nanomembranes.
    Huang X; Ohori D; Yanagisawa R; Anufriev R; Samukawa S; Nomura M
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25478-25483. PubMed ID: 32369329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of nanopillars on phonon dispersion and thermal conductivity of silicon membranes.
    Anufriev R; Ohori D; Wu Y; Yanagisawa R; Jalabert L; Samukawa S; Nomura M
    Nanoscale; 2023 Feb; 15(5):2248-2253. PubMed ID: 36628951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures.
    Fu B; Tang G; Li Y
    Phys Chem Chem Phys; 2017 Nov; 19(42):28517-28526. PubMed ID: 28902205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conductivity reduction in silicon fishbone nanowires.
    Maire J; Anufriev R; Hori T; Shiomi J; Volz S; Nomura M
    Sci Rep; 2018 Mar; 8(1):4452. PubMed ID: 29535335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semiconductor Thermal and Electrical Properties Decoupled by Localized Phonon Resonances.
    Spann BT; Weber JC; Brubaker MD; Harvey TE; Yang L; Honarvar H; Tsai CN; Treglia AC; Lee M; Hussein MI; Bertness KA
    Adv Mater; 2023 Jun; 35(26):e2209779. PubMed ID: 36951229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of thermal conductivity in kinked silicon nanowires: phonon interchanging and pinching effects.
    Jiang JW; Yang N; Wang BS; Rabczuk T
    Nano Lett; 2013 Apr; 13(4):1670-4. PubMed ID: 23517486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent Thermal Conduction in Silicon Nanowires with Periodic Wings.
    Anufriev R; Nomura M
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30678318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires.
    Wan W; Xiong B; Zhang W; Feng J; Wang E
    J Phys Condens Matter; 2012 Jul; 24(29):295402. PubMed ID: 22728956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal conductivity modeling of core-shell and tubular nanowires.
    Yang R; Chen G; Dresselhaus MS
    Nano Lett; 2005 Jun; 5(6):1111-5. PubMed ID: 15943452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-Chip Thermoelectric Devices Based on Standard Silicon Processing.
    Dimaggio E; Masci A; De Seta A; Salleras M; Fonseca L; Pennelli G
    Small; 2024 Sep; ():e2405411. PubMed ID: 39324553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal conductivity anisotropy in holey silicon nanostructures and its impact on thermoelectric cooling.
    Ren Z; Lee J
    Nanotechnology; 2018 Jan; 29(4):045404. PubMed ID: 29199973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Si/Ge superlattice nanowires with ultralow thermal conductivity.
    Hu M; Poulikakos D
    Nano Lett; 2012 Nov; 12(11):5487-94. PubMed ID: 23106449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal Transport in Silicon Nanowires at High Temperature up to 700 K.
    Lee J; Lee W; Lim J; Yu Y; Kong Q; Urban JJ; Yang P
    Nano Lett; 2016 Jul; 16(7):4133-40. PubMed ID: 27243378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Conductivity Reduction in a Silicon Thin Film with Nanocones.
    Huang X; Gluchko S; Anufriev R; Volz S; Nomura M
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34394-34398. PubMed ID: 31490655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phonon Bridge Effect in Superlattices of Thermoelectric TiNiSn/HfNiSn With Controlled Interface Intermixing.
    Heinz S; Angel EC; Trapp M; Kleebe HJ; Jakob G
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32630581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of silicide/silicon hetero-junction structure on thermal conductivity and Seebeck coefficient.
    Choi W; Park YS; Hyun Y; Zyung T; Kim J; Kim S; Jeon H; Shin M; Jang M
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7801-5. PubMed ID: 24266143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonon localization and resonance in thermal transport of pillar-based GaAs nanowires.
    Chen J; Hou Z; Chen H; Wang Z
    J Phys Condens Matter; 2022 Sep; 34(44):. PubMed ID: 35995045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon Conduction in Silicon Nanobeam Labyrinths.
    Park W; Romano G; Ahn EC; Kodama T; Park J; Barako MT; Sohn J; Kim SJ; Cho J; Marconnet AM; Asheghi M; Kolpak AM; Goodson KE
    Sci Rep; 2017 Jul; 7(1):6233. PubMed ID: 28740212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phonon surface scattering controlled length dependence of thermal conductivity of silicon nanowires.
    Xie G; Guo Y; Li B; Yang L; Zhang K; Tang M; Zhang G
    Phys Chem Chem Phys; 2013 Sep; 15(35):14647-52. PubMed ID: 23884577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.