These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 28967745)
1. Synthesis of a Zr-Based Metal-Organic Framework with Spirobifluorenetetrabenzoic Acid for the Effective Removal of Nerve Agent Simulants. Park HJ; Jang JK; Kim SY; Ha JW; Moon D; Kang IN; Bae YS; Kim S; Hwang DH Inorg Chem; 2017 Oct; 56(20):12098-12101. PubMed ID: 28967745 [TBL] [Abstract][Full Text] [Related]
2. Dual-Function Detoxifying Nanofabrics against Nerve Agent and Blistering Agent Simulants. Wu T; Qiu F; Xu R; Zhao Q; Guo L; Chen D; Li C; Jiao X ACS Appl Mater Interfaces; 2023 Jan; 15(1):1265-1275. PubMed ID: 36594244 [TBL] [Abstract][Full Text] [Related]
3. UiO-66-NH Lee DT; Zhao J; Oldham CJ; Peterson GW; Parsons GN ACS Appl Mater Interfaces; 2017 Dec; 9(51):44847-44855. PubMed ID: 29165990 [TBL] [Abstract][Full Text] [Related]
4. Photothermally Enhanced Detoxification of Chemical Warfare Agent Simulants Using Bioinspired Core-Shell Dopamine-Melanin@Metal-Organic Frameworks and Their Fabrics. Yao A; Jiao X; Chen D; Li C ACS Appl Mater Interfaces; 2019 Feb; 11(8):7927-7935. PubMed ID: 30688436 [TBL] [Abstract][Full Text] [Related]
5. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks. Plonka AM; Wang Q; Gordon WO; Balboa A; Troya D; Guo W; Sharp CH; Senanayake SD; Morris JR; Hill CL; Frenkel AI J Am Chem Soc; 2017 Jan; 139(2):599-602. PubMed ID: 28038315 [TBL] [Abstract][Full Text] [Related]
6. Degradation of G-Type Nerve Agent Simulant with Phase-Inverted Spherical Polymeric-MOF Catalysts. Kiaei K; Nord MT; Chiu NC; Stylianou KC ACS Appl Mater Interfaces; 2022 May; 14(17):19747-19755. PubMed ID: 35445601 [TBL] [Abstract][Full Text] [Related]
7. Rapid, Biomimetic Degradation of a Nerve Agent Simulant by Incorporating Imidazole Bases into a Metal-Organic Framework. Luo HB; Castro AJ; Wasson MC; Flores W; Farha OK; Liu Y ACS Catal; 2021 Feb; 11(3):1424-1429. PubMed ID: 33614195 [TBL] [Abstract][Full Text] [Related]
8. Self-Assembled MOF-on-MOF Nanofabrics for Synergistic Detoxification of Chemical Warfare Agent Simulants. Xu R; Wu T; Jiao X; Chen D; Li C ACS Appl Mater Interfaces; 2023 Jun; 15(25):30360-30371. PubMed ID: 37311009 [TBL] [Abstract][Full Text] [Related]
9. Bio-Inspired Polydopamine-Mediated Zr-MOF Fabrics for Solar Photothermal-Driven Instantaneous Detoxification of Chemical Warfare Agent Simulants. Yao A; Jiao X; Chen D; Li C ACS Appl Mater Interfaces; 2020 Apr; 12(16):18437-18445. PubMed ID: 32202409 [TBL] [Abstract][Full Text] [Related]
10. Macromorphological Control of Zr-Based Metal-Organic Frameworks for Hydrolysis of a Nerve Agent Simulant. Gibbons B; Johnson EM; Javed MK; Yang X; Morris AJ ACS Appl Mater Interfaces; 2024 Oct; 16(39):52703-52711. PubMed ID: 39292638 [TBL] [Abstract][Full Text] [Related]
11. Product Inhibition and the Catalytic Destruction of a Nerve Agent Simulant by Zirconium-Based Metal-Organic Frameworks. Liao Y; Sheridan T; Liu J; Farha O; Hupp J ACS Appl Mater Interfaces; 2021 Jul; 13(26):30565-30575. PubMed ID: 34161064 [TBL] [Abstract][Full Text] [Related]
12. Nitrogen-rich and core-sheath polyamide/polyethyleneimine@Zr-MOF for iodine adsorption and nerve agent simulant degradation. Zheng YX; Wu X; Yang WG; Li BX; Gao K; Zhou J; Liu Y; Yang D J Hazard Mater; 2024 Dec; 480():135713. PubMed ID: 39278035 [TBL] [Abstract][Full Text] [Related]
13. Dual-Function Metal-Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants. Liu Y; Moon SY; Hupp JT; Farha OK ACS Nano; 2015 Dec; 9(12):12358-64. PubMed ID: 26482030 [TBL] [Abstract][Full Text] [Related]
14. Detoxification of Chemical Warfare Agents Using a Zr Moon SY; Proussaloglou E; Peterson GW; DeCoste JB; Hall MG; Howarth AJ; Hupp JT; Farha OK Chemistry; 2016 Oct; 22(42):14864-14868. PubMed ID: 27607019 [TBL] [Abstract][Full Text] [Related]
15. Morphology Regulation of UiO-66-2I Supporting Systematic Investigations of Shape-Dependent Catalytic Activity for Degradation of an Organophosphate Nerve Agent Simulant. Wu G; Zhang B; Zhang H; Zhang X; Hu X; Meng X; Wu J; Hou H Inorg Chem; 2024 Jul; 63(27):12658-12666. PubMed ID: 38916863 [TBL] [Abstract][Full Text] [Related]
16. MOF-Polymer Mixed Matrix Membranes as Chemical Protective Layers for Solid-Phase Detoxification of Toxic Organophosphates. Luo HB; Lin FR; Liu ZY; Kong YR; Idrees KB; Liu Y; Zou Y; Farha OK; Ren XM ACS Appl Mater Interfaces; 2023 Jan; 15(2):2933-2939. PubMed ID: 36602325 [TBL] [Abstract][Full Text] [Related]
17. Function-Topology Relationship in the Catalytic Hydrolysis of a Chemical Warfare Simulant in Two Zr-MOFs. Ghasempour H; Morsali A Chemistry; 2020 Dec; 26(72):17437-17444. PubMed ID: 32757398 [TBL] [Abstract][Full Text] [Related]
18. Microwave-assisted activation and modulator removal in zirconium MOFs for buffer-free CWA hydrolysis. Kalinovskyy Y; Cooper NJ; Main MJ; Holder SJ; Blight BA Dalton Trans; 2017 Nov; 46(45):15704-15709. PubMed ID: 29094739 [TBL] [Abstract][Full Text] [Related]
19. Insight into organophosphate chemical warfare agent simulant hydrolysis in metal-organic frameworks. Ploskonka AM; DeCoste JB J Hazard Mater; 2019 Aug; 375():191-197. PubMed ID: 31059988 [TBL] [Abstract][Full Text] [Related]
20. Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal-organic framework. Moon SY; Liu Y; Hupp JT; Farha OK Angew Chem Int Ed Engl; 2015 Jun; 54(23):6795-9. PubMed ID: 25951192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]