BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 28967916)

  • 21. Calcium signaling and polycystin-2.
    Anyatonwu GI; Ehrlich BE
    Biochem Biophys Res Commun; 2004 Oct; 322(4):1364-73. PubMed ID: 15336985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular and cellular pathogenesis of autosomal dominant polycystic kidney disease.
    Bastos AP; Onuchic LF
    Braz J Med Biol Res; 2011 Jul; 44(7):606-17. PubMed ID: 21625823
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elevated TGFbeta-Smad signalling in experimental Pkd1 models and human patients with polycystic kidney disease.
    Hassane S; Leonhard WN; van der Wal A; Hawinkels LJ; Lantinga-van Leeuwen IS; ten Dijke P; Breuning MH; de Heer E; Peters DJ
    J Pathol; 2010 Sep; 222(1):21-31. PubMed ID: 20549648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pkd1 and Nek8 mutations affect cell-cell adhesion and cilia in cysts formed in kidney organ cultures.
    Natoli TA; Gareski TC; Dackowski WR; Smith L; Bukanov NO; Russo RJ; Husson H; Matthews D; Piepenhagen P; Ibraghimov-Beskrovnaya O
    Am J Physiol Renal Physiol; 2008 Jan; 294(1):F73-83. PubMed ID: 17928412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polycystic kidney disease: new knowledge and future promises.
    Foo JN; Xia Y
    Curr Opin Genet Dev; 2019 Jun; 56():69-75. PubMed ID: 31476629
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overexpression of exogenous kidney-specific Ngal attenuates progressive cyst development and prolongs lifespan in a murine model of polycystic kidney disease.
    Wang E; Chiou YY; Jeng WY; Lin HK; Lin HH; Chin HJ; Leo Wang CK; Yu SS; Tsai SC; Chiang CY; Cheng PH; Lin HJ; Jiang ST; Chiu ST; Hsieh-Li HM
    Kidney Int; 2017 Feb; 91(2):412-422. PubMed ID: 28341240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A mouse model for polycystic kidney disease through a somatic in-frame deletion in the 5' end of Pkd1.
    Starremans PG; Li X; Finnerty PE; Guo L; Takakura A; Neilson EG; Zhou J
    Kidney Int; 2008 Jun; 73(12):1394-405. PubMed ID: 18385665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. mTOR signaling in polycystic kidney disease.
    Ibraghimov-Beskrovnaya O; Natoli TA
    Trends Mol Med; 2011 Nov; 17(11):625-33. PubMed ID: 21775207
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Renal expression of FGF23 and peripheral resistance to elevated FGF23 in rodent models of polycystic kidney disease.
    Spichtig D; Zhang H; Mohebbi N; Pavik I; Petzold K; Stange G; Saleh L; Edenhofer I; Segerer S; Biber J; Jaeger P; Serra AL; Wagner CA
    Kidney Int; 2014 Jun; 85(6):1340-50. PubMed ID: 24402093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polycystin-1 affects cancer cell behaviour and interacts with mTOR and Jak signalling pathways in cancer cell lines.
    Papavassiliou KA; Zoi I; Gargalionis AN; Koutsilieris M
    J Cell Mol Med; 2019 Sep; 23(9):6215-6227. PubMed ID: 31251475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A scalable organoid model of human autosomal dominant polycystic kidney disease for disease mechanism and drug discovery.
    Tran T; Song CJ; Nguyen T; Cheng SY; McMahon JA; Yang R; Guo Q; Der B; Lindström NO; Lin DC; McMahon AP
    Cell Stem Cell; 2022 Jul; 29(7):1083-1101.e7. PubMed ID: 35803227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early embryonic renal tubules of wild-type and polycystic kidney disease kidneys respond to cAMP stimulation with cystic fibrosis transmembrane conductance regulator/Na(+),K(+),2Cl(-) Co-transporter-dependent cystic dilation.
    Magenheimer BS; St John PL; Isom KS; Abrahamson DR; De Lisle RC; Wallace DP; Maser RL; Grantham JJ; Calvet JP
    J Am Soc Nephrol; 2006 Dec; 17(12):3424-37. PubMed ID: 17108316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TGR5 contributes to hepatic cystogenesis in rodents with polycystic liver diseases through cyclic adenosine monophosphate/Gαs signaling.
    Masyuk TV; Masyuk AI; Lorenzo Pisarello M; Howard BN; Huang BQ; Lee PY; Fung X; Sergienko E; Ardecky RJ; Chung TDY; Pinkerton AB; LaRusso NF
    Hepatology; 2017 Oct; 66(4):1197-1218. PubMed ID: 28543567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphodiesterase 1A modulates cystogenesis in zebrafish.
    Sussman CR; Ward CJ; Leightner AC; Smith JL; Agarwal R; Harris PC; Torres VE
    J Am Soc Nephrol; 2014 Oct; 25(10):2222-30. PubMed ID: 24700876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polycystic kidney disease: new understanding in the pathogenesis.
    Wilson PD
    Int J Biochem Cell Biol; 2004 Oct; 36(10):1868-73. PubMed ID: 15203099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Autophagy induction promotes renal cyst growth in polycystic kidney disease.
    Lee EJ; Ko JY; Oh S; Jun J; Mun H; Lim CJ; Seo S; Ko HW; Kim H; Oh YK; Ahn C; Kang M; Kim MJ; Yoo KH; Oh GT; Park JH
    EBioMedicine; 2020 Oct; 60():102986. PubMed ID: 32949996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. β-catenin ablation exacerbates polycystic kidney disease progression.
    Conduit SE; Hakim S; Feeney SJ; Ooms LM; Dyson JM; Abud HE; Mitchell CA
    Hum Mol Genet; 2019 Jan; 28(2):230-244. PubMed ID: 30265301
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of ciliary trafficking of polycystin-2 and the pathogenesis of autosomal dominant polycystic kidney disease.
    Cai Y; Tang Z
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2010 Feb; 35(2):93-9. PubMed ID: 20197605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding pathogenic mechanisms in polycystic kidney disease provides clues for therapy.
    Harris PC; Torres VE
    Curr Opin Nephrol Hypertens; 2006 Jul; 15(4):456-63. PubMed ID: 16775462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polycystic kidney disease: the cilium as a common pathway in cystogenesis.
    Lina F; Satlinb LM
    Curr Opin Pediatr; 2004 Apr; 16(2):171-6. PubMed ID: 15021197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.