BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28967923)

  • 21. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR).
    Miller LM; Pedraza AJ; Chance MR
    Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation parameters for heme-NO binding in alcaligenes xylosoxidans cytochrome c': the putative dinitrosyl intermediate forms via a dissociative mechanism.
    Pixton DA; Petersen CA; Franke A; van Eldik R; Garton EM; Andrew CR
    J Am Chem Soc; 2009 Apr; 131(13):4846-53. PubMed ID: 19334778
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Outer-Sphere Side Chain Substitutions on the Fate of the trans Iron-Nitrosyl Dimer in Heme/Nonheme Engineered Myoglobins (Fe(B)Mbs): Insights into the Mechanism of Denitrifying NO Reductases.
    Matsumura H; Chakraborty S; Reed J; Lu Y; Moënne-Loccoz P
    Biochemistry; 2016 Apr; 55(14):2091-9. PubMed ID: 27003474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior.
    Plate L; Marletta MA
    Trends Biochem Sci; 2013 Nov; 38(11):566-75. PubMed ID: 24113192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resonance Raman Spectra of Five-Coordinate Heme-Nitrosyl Cytochromes c': Effect of the Proximal Heme-NO Environment.
    Servid AE; McKay AL; Davis CA; Garton EM; Manole A; Dobbin PS; Hough MA; Andrew CR
    Biochemistry; 2015 Jun; 54(21):3320-7. PubMed ID: 25961377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinct Nitrite and Nitric Oxide Physiologies in Escherichia coli and Shewanella oneidensis.
    Meng Q; Yin J; Jin M; Gao H
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical investigation on the diatomic ligand migration process and ligand binding properties in non-O2-binding H-NOX domain.
    Zhang Y; Liu L; Wu L; Li S; Li F; Li Z
    Proteins; 2013 Aug; 81(8):1363-76. PubMed ID: 23504767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular basis for nitric oxide dynamics and affinity with Alcaligenes xylosoxidans cytochrome c.
    Kruglik SG; Lambry JC; Cianetti S; Martin JL; Eady RR; Andrew CR; Negrerie M
    J Biol Chem; 2007 Feb; 282(7):5053-5062. PubMed ID: 17158883
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial Haemoprotein Sensors of NO: H-NOX and NosP.
    Bacon B; Nisbett LM; Boon E
    Adv Microb Physiol; 2017; 70():1-36. PubMed ID: 28528645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solution structures of the Shewanella woodyi H-NOX protein in the presence and absence of soluble guanylyl cyclase stimulator IWP-051.
    Chen CY; Lee W; Renhowe PA; Jung J; Montfort WR
    Protein Sci; 2021 Feb; 30(2):448-463. PubMed ID: 33236796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamical characterization of the heme NO oxygen binding (HNOX) domain. Insight into soluble guanylate cyclase allosteric transition.
    Capece L; Estrin DA; Marti MA
    Biochemistry; 2008 Sep; 47(36):9416-27. PubMed ID: 18702531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and Functional Evidence Indicates Selective Oxygen Signaling in Caldanaerobacter subterraneus H-NOX.
    Hespen CW; Bruegger JJ; Phillips-Piro CM; Marletta MA
    ACS Chem Biol; 2016 Aug; 11(8):2337-46. PubMed ID: 27328180
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ligand specificity of H-NOX domains: from sGC to bacterial NO sensors.
    Boon EM; Marletta MA
    J Inorg Biochem; 2005 Apr; 99(4):892-902. PubMed ID: 15811506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heme-independent Redox Sensing by the Heme-Nitric Oxide/Oxygen-binding Protein (H-NOX) from Vibrio cholerae.
    Mukhopadyay R; Sudasinghe N; Schaub T; Yukl ET
    J Biol Chem; 2016 Aug; 291(34):17547-56. PubMed ID: 27358409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discovery of a Nitric Oxide-Responsive Protein in
    Zarban R; Vogler M; Wong A; Eppinger J; Al-Babili S; Gehring C
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31344907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of nitric oxide dissociation from five- and six-coordinate nitrosyl hemes and heme proteins, including soluble guanylate cyclase.
    Kharitonov VG; Sharma VS; Magde D; Koesling D
    Biochemistry; 1997 Jun; 36(22):6814-8. PubMed ID: 9184164
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectroscopic characterization of the soluble guanylate cyclase-like heme domains from Vibrio cholerae and Thermoanaerobacter tengcongensis.
    Karow DS; Pan D; Tran R; Pellicena P; Presley A; Mathies RA; Marletta MA
    Biochemistry; 2004 Aug; 43(31):10203-11. PubMed ID: 15287748
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Primary processes in heme-based sensor proteins.
    Liebl U; Lambry JC; Vos MH
    Biochim Biophys Acta; 2013 Sep; 1834(9):1684-92. PubMed ID: 23485911
    [TBL] [Abstract][Full Text] [Related]  

  • 39. H-NOX domains display different tunnel systems for ligand migration.
    Zhang Y; Lu M; Cheng Y; Li Z
    J Mol Graph Model; 2010 Jun; 28(8):814-9. PubMed ID: 20338794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectral and kinetic studies on the activation of soluble guanylate cyclase by nitric oxide.
    Stone JR; Marletta MA
    Biochemistry; 1996 Jan; 35(4):1093-9. PubMed ID: 8573563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.