These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 28967931)
1. Tuning of resonance energy transfer from 4',6-diamidino-2-phenylindole to an ultrasmall silver nanocluster across the lipid bilayer. Vaishnav JK; Mukherjee TK Phys Chem Chem Phys; 2017 Oct; 19(40):27305-27312. PubMed ID: 28967931 [TBL] [Abstract][Full Text] [Related]
2. Effect of compartmentalization of donor and acceptor on the ultrafast resonance energy transfer from DAPI to silver nanoclusters. Prajapati R; Chatterjee S; Kannaujiya KK; Mukherjee TK Nanoscale; 2016 Jul; 8(26):13006-16. PubMed ID: 27304093 [TBL] [Abstract][Full Text] [Related]
3. Förster resonance energy transfer-based biosensing platform with ultrasmall silver nanoclusters as energy acceptors. Xiao Y; Shu F; Wong KY; Liu Z Anal Chem; 2013 Sep; 85(18):8493-7. PubMed ID: 23981044 [TBL] [Abstract][Full Text] [Related]
4. Fluorescence resonance energy transfer and molecular modeling studies on 4',6-diamidino-2-phenylindole (DAPI) complexes with tubulin. Arbildua JJ; Brunet JE; Jameson DM; López M; Nova E; Lagos R; Monasterio O Protein Sci; 2006 Mar; 15(3):410-9. PubMed ID: 16452620 [TBL] [Abstract][Full Text] [Related]
5. Investigating ligand-receptor interactions at bilayer surface using electronic absorption spectroscopy and fluorescence resonance energy transfer. Dogra N; Li X; Kohli P Langmuir; 2012 Sep; 28(36):12989-98. PubMed ID: 22734511 [TBL] [Abstract][Full Text] [Related]
6. Spectroscopic studies of 1,4-dimethoxy-2,3-dimethylanthracene-9,10-dione on plasmonic silver nanoparticles. Kavitha SR; Umadevi M; Vanelle P; Terme T; Khoumeri O; Sridhar B Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():472-9. PubMed ID: 24973788 [TBL] [Abstract][Full Text] [Related]
7. Spectroscopic studies on ligand-enzyme interactions: complexation of alpha-chymotrypsin with 4',6-diamidino-2-phenylindole (DAPI). Banerjee D; Srivastava SK; Pal SK J Phys Chem B; 2008 Feb; 112(6):1828-33. PubMed ID: 18205349 [TBL] [Abstract][Full Text] [Related]
8. Organization and dynamics of NBD-labeled lipids in lipid bilayer analyzed by FRET using the small membrane fluorescent probe AHBA as donor. Marquezin CA; Ito AS; de Souza ES Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182995. PubMed ID: 31136733 [TBL] [Abstract][Full Text] [Related]
9. Effects of silver nanoparticles on the fluidity of bilayer in phospholipid liposome. Park SH; Oh SG; Mun JY; Han SS Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):117-22. PubMed ID: 16040237 [TBL] [Abstract][Full Text] [Related]
10. Molecular energy and electron transfer assemblies made of self-organized lipid-porphyrin bilayer vesicles. Komatsu T; Moritake M; Tsuchida E Chemistry; 2003 Oct; 9(19):4626-33. PubMed ID: 14566867 [TBL] [Abstract][Full Text] [Related]
11. Self-assembled ultrasmall silver nanoclusters on liposome for topical antimicrobial delivery. Liu J; Li X; Liu L; Bai Q; Sui N; Zhu Z Colloids Surf B Biointerfaces; 2021 Apr; 200():111618. PubMed ID: 33592456 [TBL] [Abstract][Full Text] [Related]
12. Real-time monitoring of ligand-receptor interactions with fluorescence resonance energy transfer. Dogra N; Reyes JC; Garg N; Kohli P J Vis Exp; 2012 Aug; (66):e3805. PubMed ID: 22929922 [TBL] [Abstract][Full Text] [Related]
13. Mixing ratio-dependent energy transfer from DNA-bound 4',6-diamidino-2-phenylindole to [Ru(1,10-phenanthroline)(2)dipyrido[3,2-a:2',3'-c]phenazine](2+). Choi JY; Lee JM; Lee H; Jung MJ; Kim SK; Kim JM Biophys Chem; 2008 Apr; 134(1-2):56-63. PubMed ID: 18304724 [TBL] [Abstract][Full Text] [Related]
14. Probe-location dependent resonance energy transfer at lipid/water interfaces: comparison between the gel- and fluid-phase of lipid bilayer. Singh MK; Khan MF; Shweta H; Sen S Phys Chem Chem Phys; 2017 Oct; 19(38):25870-25885. PubMed ID: 28726898 [TBL] [Abstract][Full Text] [Related]
15. Forster resonance energy transfer in liposomes: measurements of transmembrane helix dimerization in the native bilayer environment. You M; Li E; Wimley WC; Hristova K Anal Biochem; 2005 May; 340(1):154-64. PubMed ID: 15802141 [TBL] [Abstract][Full Text] [Related]
16. Energy transfer in artificial membrane systems. Singlet-singlet energy transfer from alloxazines to isolloxazines in dipamitoyl phosphatidylcholine liposomes and dialkylammonium chloride vesicles. Aso Y; Kano K; Matsuo T Biochim Biophys Acta; 1980 Jul; 599(2):403-16. PubMed ID: 6893280 [TBL] [Abstract][Full Text] [Related]
17. Spectral Förster resonance energy transfer detection of protein interactions in surface-supported bilayers. Merzlyakov M; Li E; Casas R; Hristova K Langmuir; 2006 Aug; 22(16):6986-92. PubMed ID: 16863249 [TBL] [Abstract][Full Text] [Related]
18. Coverage-dependent changes of cytochrome c transverse location in phospholipid membranes revealed by FRET. Domanov YA; Molotkovsky JG; Gorbenko GP Biochim Biophys Acta; 2005 Oct; 1716(1):49-58. PubMed ID: 16183372 [TBL] [Abstract][Full Text] [Related]
19. Fluorescence resonance energy transfer in polydiacetylene liposomes. Li X; Matthews S; Kohli P J Phys Chem B; 2008 Oct; 112(42):13263-72. PubMed ID: 18816092 [TBL] [Abstract][Full Text] [Related]
20. DNA mediated resonance energy transfer from 4',6-diamidino-2-phenylindole to [Ru(1,10-phenanthroline)2L]2+. Lee BW; Moon SJ; Youn MR; Kim JH; Jang HG; Kim SK Biophys J; 2003 Dec; 85(6):3865-71. PubMed ID: 14645076 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]