These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28968077)

  • 1. Three-Dimensional Super-resolution Imaging of Single Nanoparticles Delivered by Pipettes.
    Yu Y; Sundaresan V; Bandyopadhyay S; Zhang Y; Edwards MA; McKelvey K; White HS; Willets KA
    ACS Nano; 2017 Oct; 11(10):10529-10538. PubMed ID: 28968077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoactivatable fluorescent probes reveal heterogeneous nanoparticle permeation through biological gels at multiple scales.
    Schuster BS; Allan DB; Kays JC; Hanes J; Leheny RL
    J Control Release; 2017 Aug; 260():124-133. PubMed ID: 28578189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional real-time tracking of nanoparticles at an oil-water interface.
    Du K; Liddle JA; Berglund AJ
    Langmuir; 2012 Jun; 28(25):9181-8. PubMed ID: 22667449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of gold and silica nanoparticles with plasma membranes get distinguished by the van der Waals forces: Implications for drug delivery, imaging, and theranostics.
    Jing H; Sinha S; Sachar HS; Das S
    Colloids Surf B Biointerfaces; 2019 May; 177():433-439. PubMed ID: 30798064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of polytetrafluoroethylene nanoparticle films using repulsive electrostatic interactions.
    Du C; Wang J; Chen D
    Langmuir; 2014 Feb; 30(4):976-83. PubMed ID: 24409997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent carbon dot modified mesoporous silica nanocarriers for redox-responsive controlled drug delivery and bioimaging.
    Jiao J; Liu C; Li X; Liu J; Di D; Zhang Y; Zhao Q; Wang S
    J Colloid Interface Sci; 2016 Dec; 483():343-352. PubMed ID: 27569517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hindered nanoparticle diffusion and void accessibility in a three-dimensional porous medium.
    Skaug MJ; Wang L; Ding Y; Schwartz DK
    ACS Nano; 2015 Feb; 9(2):2148-56. PubMed ID: 25647084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional mapping of fluorescent nanoparticles using incoherent digital holography.
    Yanagawa T; Abe R; Hayasaki Y
    Opt Lett; 2015 Jul; 40(14):3312-5. PubMed ID: 26176457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface charge and interactions of 20-nm nanocolloids in a nematic liquid crystal.
    Ryzhkova AV; Škarabot M; Muševič I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042505. PubMed ID: 25974514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of transport and extravasation of nanoparticles in tumors which exhibit enhanced permeability and retention effect.
    Podduturi VP; Magaña IB; O'Neal DP; Derosa PA
    Comput Methods Programs Biomed; 2013 Oct; 112(1):58-68. PubMed ID: 23871689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking receptors using individual fluorescent and nonfluorescent nanolabels.
    Cognet L; Lounis B; Choquet D
    Cold Spring Harb Protoc; 2014 Feb; 2014(2):207-13. PubMed ID: 24492778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FluidFM as a lithography tool in liquid: spatially controlled deposition of fluorescent nanoparticles.
    Grüter RR; Vörös J; Zambelli T
    Nanoscale; 2013 Feb; 5(3):1097-104. PubMed ID: 23262663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Waltz" of Cell Membrane-Coated Nanoparticles on Lipid Bilayers: Tracking Single Particle Rotation in Ligand-Receptor Binding.
    Yu Y; Gao Y; Yu Y
    ACS Nano; 2018 Dec; 12(12):11871-11880. PubMed ID: 30421608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scanning-aperture trapping and manipulation of single charged nanoparticles.
    Tae Kim J; Spindler S; Sandoghdar V
    Nat Commun; 2014 Mar; 5():3380. PubMed ID: 24614532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging Dynamic Collision and Oxidation of Single Silver Nanoparticles at the Electrode/Solution Interface.
    Hao R; Fan Y; Zhang B
    J Am Chem Soc; 2017 Sep; 139(35):12274-12282. PubMed ID: 28799330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle diffusion within intestinal mucus: Three-dimensional response analysis dissecting the impact of particle surface charge, size and heterogeneity across polyelectrolyte, pegylated and viral particles.
    Abdulkarim M; Agulló N; Cattoz B; Griffiths P; Bernkop-Schnürch A; Borros SG; Gumbleton M
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):230-8. PubMed ID: 25661585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time modulated nanoparticle separation with an ultra-large dynamic range.
    Zeming KK; Thakor NV; Zhang Y; Chen CH
    Lab Chip; 2016 Jan; 16(1):75-85. PubMed ID: 26575003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled SLN Delivery by Thermoresponsive In-situ Forming Erodible Gels; A Whole-body and Organ Imaging Study.
    Dorraj G; Dadashzadeh S; Erfan M; Moghimi HR
    Curr Drug Deliv; 2018; 15(4):510-519. PubMed ID: 29422000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charged nanoparticle in a nanochannel: Competition between electrostatic and dielectrophoretic forces.
    Hulings ZK; Melnikov DV; Gracheva ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062713. PubMed ID: 26172742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualizing and Calculating Tip-Substrate Distance in Nanoscale Scanning Electrochemical Microscopy Using 3-Dimensional Super-Resolution Optical Imaging.
    Sundaresan V; Marchuk K; Yu Y; Titus EJ; Wilson AJ; Armstrong CM; Zhang B; Willets KA
    Anal Chem; 2017 Jan; 89(1):922-928. PubMed ID: 27991761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.