These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28968212)

  • 1. Effect of pH on optimization of photofermentative hydrogen production by co-culture of Rhodobacter sphaeroides-NMBL-02 and Bacillus firmus-NMBL-03.
    Pandey A; Dolly S; Semwal D; Pandey A
    Cell Mol Biol (Noisy-le-grand); 2017 Jul; 63(6):68-72. PubMed ID: 28968212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploitation of dark fermented effluent of cheese whey by co-culture of Rhodobacter sphaeroides and Bacillus firmus for photo-hydrogen production.
    Pandey A; Pandey A
    Cell Mol Biol (Noisy-le-grand); 2017 Jul; 63(6):93-99. PubMed ID: 28968216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of pH and carbon sources on biohydrogen production by co-culture of Clostridium butyricum and Rhodobacter sphaeroides.
    Lee JY; Chen XJ; Lee EJ; Min KS
    J Microbiol Biotechnol; 2012 Mar; 22(3):400-6. PubMed ID: 22450797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of pH control on biohydrogen production by single stage hybrid dark- and photo-fermentation.
    Zagrodnik R; Laniecki M
    Bioresour Technol; 2015 Oct; 194():187-95. PubMed ID: 26196419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introduction of Glyoxylate Bypass Increases Hydrogen Gas Yield from Acetate and l-Glutamate in
    Shimizu T; Teramoto H; Inui M
    Appl Environ Microbiol; 2019 Jan; 85(2):. PubMed ID: 30413472
    [No Abstract]   [Full Text] [Related]  

  • 6. Evaluation of Lighting Systems, Carbon Sources, and Bacteria Cultures on Photofermentative Hydrogen Production.
    Hu C; Choy SY; Giannis A
    Appl Biochem Biotechnol; 2018 May; 185(1):257-269. PubMed ID: 29127540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of aeration, agitation and light on biohydrogen production by Rhodobacter sphaeroides NCIMB 8253.
    Jaapar SZ; Kalil MS; Anuar N
    Pak J Biol Sci; 2009 Sep; 12(18):1253-9. PubMed ID: 20384278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term H
    Laurinavichene T; Laurinavichius K; Shastik E; Tsygankov A
    Biotechnol Lett; 2018 Feb; 40(2):309-314. PubMed ID: 29189926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel properties of photofermentative biohydrogen production by purple bacteria Rhodobacter sphaeroides: effects of protonophores and inhibitors of responsible enzymes.
    Gabrielyan L; Sargsyan H; Trchounian A
    Microb Cell Fact; 2015 Sep; 14():131. PubMed ID: 26337489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibited growth of Clostridium butyricum in efficient H
    Laurinavichene T; Laurinavichius K; Shastik E; Tsygankov A
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10649-10658. PubMed ID: 27838838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen production from starch by co-culture of Clostridium acetobutylicum and Rhodobacter sphaeroides in one step hybrid dark- and photofermentation in repeated fed-batch reactor.
    Zagrodnik R; Łaniecki M
    Bioresour Technol; 2017 Jan; 224():298-306. PubMed ID: 27810246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria.
    Sagir E; Ozgur E; Gunduz U; Eroglu I; Yucel M
    Bioprocess Biosyst Eng; 2017 Nov; 40(11):1589-1601. PubMed ID: 28730325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen production by Rhodobacter sphaeroides strain O.U.001 using spent media of Enterobacter cloacae strain DM11.
    Nath K; Kumar A; Das D
    Appl Microbiol Biotechnol; 2005 Sep; 68(4):533-41. PubMed ID: 15666144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photofermentative production of hydrogen and poly-β-hydroxybutyrate from dark fermentation products.
    Luongo V; Ghimire A; Frunzo L; Fabbricino M; d'Antonio G; Pirozzi F; Esposito G
    Bioresour Technol; 2017 Mar; 228():171-175. PubMed ID: 28063359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of activation conditions of Rhodobacter sphaeroides in hydrogen generation process.
    Waligórska M; Seifert K; Szymańska K; Łaniecki M
    J Appl Microbiol; 2006 Oct; 101(4):775-84. PubMed ID: 16968289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient hydrogen production from acetate through isolated Rhodobacter sphaeroides.
    Kobayashi J; Yoshimune K; Komoriya T; Kohno H
    J Biosci Bioeng; 2011 Dec; 112(6):602-5. PubMed ID: 21903465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An unexpected negative influence of light intensity on hydrogen production by dark fermentative bacteria Clostridium beijerinckii.
    Zagrodnik R; Laniecki M
    Bioresour Technol; 2016 Jan; 200():1039-43. PubMed ID: 26602144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of poly (3-hydroxyalkanoate) depolymerase gene and overexpression of three poly (3-hydroxybutyrate) biosynthetic genes improve poly (3-hydroxybutyrate) production from nitrogen rich medium by Rhodobacter sphaeroides.
    Kobayashi J; Kondo A
    Microb Cell Fact; 2019 Feb; 18(1):40. PubMed ID: 30808422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering the transcriptional activator NifA for the construction of Rhodobacter sphaeroides strains that produce hydrogen gas constitutively.
    Shimizu T; Teramoto H; Inui M
    Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9739-9749. PubMed ID: 31696284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic model of hydrogen generation by Rhodobacter sphaeroides in the presence of NH ions.
    Waligórska M; Seifert K; Górecki K; Moritz M; Laniecki M
    J Appl Microbiol; 2009 Oct; 107(4):1308-18. PubMed ID: 19486388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.