These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 28968248)

  • 1. Shortest path based network analysis to characterize cognitive load states of human brain using EEG based functional brain networks.
    Thilaga M; Ramasamy V; Nadarajan R; Nandagopal D
    J Integr Neurosci; 2018; 17(2):133-148. PubMed ID: 28968248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Path ensembles and a tradeoff between communication efficiency and resilience in the human connectome.
    Avena-Koenigsberger A; Mišić B; Hawkins RX; Griffa A; Hagmann P; Goñi J; Sporns O
    Brain Struct Funct; 2017 Jan; 222(1):603-618. PubMed ID: 27334341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel pattern mining approach for identifying cognitive activity in EEG based functional brain networks.
    Thilaga M; Vijayalakshmi R; Nadarajan R; Nandagopal D
    J Integr Neurosci; 2016 Jun; 15(2):223-45. PubMed ID: 27401999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Moment to moment variability in functional brain networks during cognitive activity in EEG data.
    Dasari NM; Nandagopal ND; Ramasamy V; Cocks B; Thomas BH; Dahal N; Gaertner P
    J Integr Neurosci; 2015 Sep; 14(3):383-402. PubMed ID: 26365114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graph Theory at the Service of Electroencephalograms.
    Iakovidou ND
    Brain Connect; 2017 Apr; 7(3):137-151. PubMed ID: 28177260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic reorganization of brain functional networks during cognition.
    Bola M; Sabel BA
    Neuroimage; 2015 Jul; 114():398-413. PubMed ID: 25828884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling information flow along the human connectome using maximum flow.
    Lyoo Y; Kim JE; Yoon S
    Med Hypotheses; 2018 Jan; 110():155-160. PubMed ID: 29317061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hippocampus as a cognitive graph.
    Muller RU; Stead M; Pach J
    J Gen Physiol; 1996 Jun; 107(6):663-94. PubMed ID: 8783070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG-based research on brain functional networks in cognition.
    Wang N; Zhang L; Liu G
    Biomed Mater Eng; 2015; 26 Suppl 1():S1107-14. PubMed ID: 26405867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data.
    Vecchio F; Miraglia F; Curcio G; Altavilla R; Scrascia F; Giambattistelli F; Quattrocchi CC; Bramanti P; Vernieri F; Rossini PM
    J Alzheimers Dis; 2015; 45(3):745-56. PubMed ID: 25613102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graph-to-signal transformation based classification of functional connectivity brain networks.
    Munia TTK; Aviyente S
    PLoS One; 2019; 14(8):e0212470. PubMed ID: 31437168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of Graph Complexity Based on the Edge Weight Distribution Balance: Application to Brain Networks.
    Gomez-Pilar J; Poza J; Bachiller A; Gómez C; Núñez P; Lubeiro A; Molina V; Hornero R
    Int J Neural Syst; 2018 Feb; 28(1):1750032. PubMed ID: 28691561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Functional Segregation and Integration in Human Brain Network During Complex Tasks.
    Shen Ren ; Junhua Li ; Taya F; deSouza J; Thakor NV; Bezerianos A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):547-556. PubMed ID: 28113670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resting-brain functional connectivity predicted by analytic measures of network communication.
    Goñi J; van den Heuvel MP; Avena-Koenigsberger A; Velez de Mendizabal N; Betzel RF; Griffa A; Hagmann P; Corominas-Murtra B; Thiran JP; Sporns O
    Proc Natl Acad Sci U S A; 2014 Jan; 111(2):833-8. PubMed ID: 24379387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking the Reorganization of Module Structure in Time-Varying Weighted Brain Functional Connectivity Networks.
    Schmidt C; Piper D; Pester B; Mierau A; Witte H
    Int J Neural Syst; 2018 May; 28(4):1750051. PubMed ID: 29297262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal dynamics in spiking recurrent neural networks using modified-full-FORCE on EEG signals.
    Ioannides G; Kourouklides I; Astolfi A
    Sci Rep; 2022 Feb; 12(1):2896. PubMed ID: 35190579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Union of Shortest Path Trees of Functional Brain Networks.
    Meier J; Tewarie P; Van Mieghem P
    Brain Connect; 2015 Nov; 5(9):575-81. PubMed ID: 26027712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the brain network: a review on resting-state fMRI functional connectivity.
    van den Heuvel MP; Hulshoff Pol HE
    Eur Neuropsychopharmacol; 2010 Aug; 20(8):519-34. PubMed ID: 20471808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finding shortest and nearly shortest path nodes in large substantially incomplete networks by hyperbolic mapping.
    Kitsak M; Ganin A; Elmokashfi A; Cui H; Eisenberg DA; Alderson DL; Korkin D; Linkov I
    Nat Commun; 2023 Jan; 14(1):186. PubMed ID: 36650144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growing trees in child brains: graph theoretical analysis of electroencephalography-derived minimum spanning tree in 5- and 7-year-old children reflects brain maturation.
    Boersma M; Smit DJ; Boomsma DI; De Geus EJ; Delemarre-van de Waal HA; Stam CJ
    Brain Connect; 2013; 3(1):50-60. PubMed ID: 23106635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.