These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 28968385)

  • 1. A continuum-mechanical skeletal muscle model including actin-titin interaction predicts stable contractions on the descending limb of the force-length relation.
    Heidlauf T; Klotz T; Rode C; Siebert T; Röhrle O
    PLoS Comput Biol; 2017 Oct; 13(10):e1005773. PubMed ID: 28968385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actin-titin interaction.
    Heidlauf T; Klotz T; Rode C; Altan E; Bleiler C; Siebert T; Röhrle O
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1423-1437. PubMed ID: 26935301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contracting striated muscle has a dynamic I-band spring with an undamped stiffness 100 times larger than the passive stiffness.
    Powers JD; Bianco P; Pertici I; Reconditi M; Lombardi V; Piazzesi G
    J Physiol; 2020 Jan; 598(2):331-345. PubMed ID: 31786814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sarcomere length non-uniformities dictate force production along the descending limb of the force-length relation.
    Haeger R; de Souza Leite F; Rassier DE
    Proc Biol Sci; 2020 Oct; 287(1937):20202133. PubMed ID: 33109011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of titin in eccentric muscle contraction.
    Herzog W
    J Exp Biol; 2014 Aug; 217(Pt 16):2825-33. PubMed ID: 25122914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The three filament model of skeletal muscle stability and force production.
    Herzog W; Leonard T; Joumaa V; DuVall M; Panchangam A
    Mol Cell Biomech; 2012 Sep; 9(3):175-91. PubMed ID: 23285733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does partial titin degradation affect sarcomere length nonuniformities and force in active and passive myofibrils?
    Joumaa V; Bertrand F; Liu S; Poscente S; Herzog W
    Am J Physiol Cell Physiol; 2018 Sep; 315(3):C310-C318. PubMed ID: 29768046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eccentric contraction: unraveling mechanisms of force enhancement and energy conservation.
    Nishikawa K
    J Exp Biol; 2016 Jan; 219(Pt 2):189-96. PubMed ID: 26792330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sarcomere mechanics in striated muscles: from molecules to sarcomeres to cells.
    Rassier DE
    Am J Physiol Cell Physiol; 2017 Aug; 313(2):C134-C145. PubMed ID: 28539306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Spatially Explicit Model Shows How Titin Stiffness Modulates Muscle Mechanics and Energetics.
    Powers JD; Williams CD; Regnier M; Daniel TL
    Integr Comp Biol; 2018 Aug; 58(2):186-193. PubMed ID: 29897447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A low-cost 2-D sarcomere model to demonstrate titin-related mechanisms for force production.
    Baptista de Oliveira Medeiros H; de Brito Fontana H; Herzog W
    Adv Physiol Educ; 2024 Mar; 48(1):92-96. PubMed ID: 38059284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel three-filament model of force generation in eccentric contraction of skeletal muscles.
    Schappacher-Tilp G; Leonard T; Desch G; Herzog W
    PLoS One; 2015; 10(3):e0117634. PubMed ID: 25816319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nebulin and titin modulate cross-bridge cycling and length-dependent calcium sensitivity.
    Mijailovich SM; Stojanovic B; Nedic D; Svicevic M; Geeves MA; Irving TC; Granzier HL
    J Gen Physiol; 2019 May; 151(5):680-704. PubMed ID: 30948421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased force enhancement in skeletal muscle sarcomeres with a deletion in titin.
    Powers K; Nishikawa K; Joumaa V; Herzog W
    J Exp Biol; 2016 May; 219(Pt 9):1311-6. PubMed ID: 26944495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanisms of the residual force enhancement after stretch of skeletal muscle: non-uniformity in half-sarcomeres and stiffness of titin.
    Rassier DE
    Proc Biol Sci; 2012 Jul; 279(1739):2705-13. PubMed ID: 22535786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force enhancement following stretching of skeletal muscle: a new mechanism.
    Herzog W; Leonard TR
    J Exp Biol; 2002 May; 205(Pt 9):1275-83. PubMed ID: 11948204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of passive force in single skeletal muscle fibres.
    Rassier DE; Lee EJ; Herzog W
    Biol Lett; 2005 Sep; 1(3):342-5. PubMed ID: 17148202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mechanical model of the half-sarcomere which includes the contribution of titin.
    Pertici I; Caremani M; Reconditi M
    J Muscle Res Cell Motil; 2019 Mar; 40(1):29-41. PubMed ID: 30900059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Work Done by Titin Protein Folding Assists Muscle Contraction.
    Rivas-Pardo JA; Eckels EC; Popa I; Kosuri P; Linke WA; Fernández JM
    Cell Rep; 2016 Feb; 14(6):1339-1347. PubMed ID: 26854230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force enhancement following stretch in a single sarcomere.
    Leonard TR; DuVall M; Herzog W
    Am J Physiol Cell Physiol; 2010 Dec; 299(6):C1398-401. PubMed ID: 20844251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.