These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 28968385)

  • 41. Titin force is enhanced in actively stretched skeletal muscle.
    Powers K; Schappacher-Tilp G; Jinha A; Leonard T; Nishikawa K; Herzog W
    J Exp Biol; 2014 Oct; 217(Pt 20):3629-36. PubMed ID: 25147246
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments.
    Granzier HL; Irving TC
    Biophys J; 1995 Mar; 68(3):1027-44. PubMed ID: 7756523
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Titin stiffness modifies the force-generating region of muscle sarcomeres.
    Li Y; Lang P; Linke WA
    Sci Rep; 2016 Apr; 6():24492. PubMed ID: 27079135
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Force-length properties in stable skeletal muscle fibers--theoretical considerations.
    Allinger TL; Herzog W; Epstein M
    J Biomech; 1996 Sep; 29(9):1235-40. PubMed ID: 8872284
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Basis of passive tension and stiffness in isolated rabbit myofibrils.
    Bartoo ML; Linke WA; Pollack GH
    Am J Physiol; 1997 Jul; 273(1 Pt 1):C266-76. PubMed ID: 9252465
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stretching the story of titin and muscle function.
    Linke WA
    J Biomech; 2023 May; 152():111553. PubMed ID: 36989971
    [TBL] [Abstract][Full Text] [Related]  

  • 47. History-dependent properties of skeletal muscle myofibrils contracting along the ascending limb of the force-length relationship.
    Pun C; Syed A; Rassier DE
    Proc Biol Sci; 2010 Feb; 277(1680):475-84. PubMed ID: 19846455
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Limits of titin extension in single cardiac myofibrils.
    Linke WA; Bartoo ML; Ivemeyer M; Pollack GH
    J Muscle Res Cell Motil; 1996 Aug; 17(4):425-38. PubMed ID: 8884598
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of a titin mutation on force enhancement and force depression in mouse soleus muscles.
    Tahir U; Monroy JA; Rice NA; Nishikawa KC
    J Exp Biol; 2020 Jan; 223(Pt 2):. PubMed ID: 31862847
    [TBL] [Abstract][Full Text] [Related]  

  • 50. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Actin-titin interaction in cardiac myofibrils: probing a physiological role.
    Linke WA; Ivemeyer M; Labeit S; Hinssen H; Rüegg JC; Gautel M
    Biophys J; 1997 Aug; 73(2):905-19. PubMed ID: 9251807
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Is titin a 'winding filament'? A new twist on muscle contraction.
    Nishikawa KC; Monroy JA; Uyeno TE; Yeo SH; Pai DK; Lindstedt SL
    Proc Biol Sci; 2012 Mar; 279(1730):981-90. PubMed ID: 21900329
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mysteries of muscle contraction.
    Herzog W; Leonard TR; Joumaa V; Mehta A
    J Appl Biomech; 2008 Feb; 24(1):1-13. PubMed ID: 18309178
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Downsizing the molecular spring of the giant protein titin reveals that skeletal muscle titin determines passive stiffness and drives longitudinal hypertrophy.
    Brynnel A; Hernandez Y; Kiss B; Lindqvist J; Adler M; Kolb J; van der Pijl R; Gohlke J; Strom J; Smith J; Ottenheijm C; Granzier HL
    Elife; 2018 Dec; 7():. PubMed ID: 30565562
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stability of muscle fibers on the descending limb of the force-length relation. A theoretical consideration.
    Allinger TL; Epstein M; Herzog W
    J Biomech; 1996 May; 29(5):627-33. PubMed ID: 8707789
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cardiac titin: molecular basis of elasticity and cellular contribution to elastic and viscous stiffness components in myocardium.
    Linke WA; Fernandez JM
    J Muscle Res Cell Motil; 2002; 23(5-6):483-97. PubMed ID: 12785099
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Titin-based contribution to shortening velocity of rabbit skeletal myofibrils.
    Minajeva A; Neagoe C; Kulke M; Linke WA
    J Physiol; 2002 Apr; 540(Pt 1):177-88. PubMed ID: 11927678
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Force enhancement after stretch of isolated myofibrils is increased by sarcomere length non-uniformities.
    Haeger RM; Rassier DE
    Sci Rep; 2020 Dec; 10(1):21590. PubMed ID: 33299041
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular mechanisms of muscle contraction: A historical perspective.
    Herzog W; Schappacher-Tilp G
    J Biomech; 2023 Jun; 155():111659. PubMed ID: 37290181
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Current Understanding of Residual Force Enhancement: Cross-Bridge Component and Non-Cross-Bridge Component.
    Fukutani A; Herzog W
    Int J Mol Sci; 2019 Nov; 20(21):. PubMed ID: 31689920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.