These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28968500)

  • 1. Quantum Theory of Atoms in Molecules Charge-Charge Transfer-Dipolar Polarization Classification of Infrared Intensities.
    Duarte LJ; Richter WE; Silva AF; Bruns RE
    J Phys Chem A; 2017 Oct; 121(42):8115-8123. PubMed ID: 28968500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic charge and atomic dipole modeling of gas-phase infrared intensities of fundamental bands for out-of-plane CH and CF bending vibrations.
    Richter WE; Duarte LJ; Bruns RE
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 251():119393. PubMed ID: 33450451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic charge transfer-counter polarization effects determine infrared CH intensities of hydrocarbons: a quantum theory of atoms in molecules model.
    Silva AF; Richter WE; Meneses HG; Bruns RE
    Phys Chem Chem Phys; 2014 Nov; 16(42):23224-32. PubMed ID: 25254435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic Polarizations, Not Charges, Determine CH Out-of-Plane Bending Intensities of Benzene Molecules.
    Duarte LJ; Bruns RE
    J Phys Chem A; 2018 Dec; 122(51):9833-9841. PubMed ID: 30495956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic polarizations necessary for coherent infrared intensity modeling with theoretical calculations.
    Richter WE; Silva AF; Bruns RE
    J Chem Phys; 2017 Apr; 146(13):134107. PubMed ID: 28390371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristic infrared intensities of carbonyl stretching vibrations.
    Richter WE; Silva AF; Vidal LN; Bruns RE
    Phys Chem Chem Phys; 2016 Jul; 18(26):17575-85. PubMed ID: 27306140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FTIR and dispersive gas phase absolute infrared intensities of hydrocarbon fundamental bands.
    Duarte LJ; Bruns RE
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 May; 214():1-6. PubMed ID: 30743071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QTAIM Atomic Charge and Polarization Parameters and Their Machine-Learning Transference among Boron-Halide Molecules.
    Duarte LJ; Bruns RE
    J Phys Chem A; 2020 Apr; 124(17):3407-3416. PubMed ID: 32250118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How accessible is atomic charge information from infrared intensities? A QTAIM/CCFDF interpretation.
    Silva AF; Richter WE; Meneses HG; Faria SH; Bruns RE
    J Phys Chem A; 2012 Aug; 116(31):8238-49. PubMed ID: 22724623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QTAIM charge-charge flux-dipole flux models for the fundamental infrared intensities of BF3 and BCl3.
    Richter WE; Silva AF; Pitoli AC; Vazquez PA; Bruns RE
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Dec; 116():136-42. PubMed ID: 23933549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the robustness of the charge-charge transfer-dipolar polarization model and infrared intensities.
    Silva AF; Duarte LJ; Bruns RE
    J Mol Model; 2018 Jun; 24(7):182. PubMed ID: 29959583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic atomic contributions to infrared intensities of fundamental bands.
    Silva AF; Richter WE; Bassi AB; Bruns RE
    Phys Chem Chem Phys; 2015 Nov; 17(45):30378-88. PubMed ID: 26508036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum theory of atoms in molecules charge-charge flux-dipole flux models for the infrared intensities of X(2)CY (X = H, F, Cl; Y = O, S) molecules.
    Faria SH; da Silva JV; Haiduke RL; Vidal LN; Vazquez PA; Bruns RE
    J Phys Chem A; 2007 Aug; 111(32):7870-5. PubMed ID: 17616111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QTAIM-Based Characteristic Group Infrared Intensities of Amino Acids and Their Transference to Peptides.
    Silva AF; Duarte LJ; Bruns RE
    J Phys Chem A; 2016 Oct; 120(42):8387-8399. PubMed ID: 27689241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum theory atoms in molecules charge-charge flux-dipole flux models for the infrared intensities of benzene and hexafluorobenzene.
    da Silva JV; Oliveira AE; Hase Y; Bruns RE
    J Phys Chem A; 2009 Jul; 113(27):7972-8. PubMed ID: 19522474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum theory of atoms in molecules/charge-charge flux-dipole flux models for fundamental vibrational intensity changes on H-bond formation of water and hydrogen fluoride.
    Silva AF; Richter WE; Terrabuio LA; Haiduke RL; Bruns RE
    J Chem Phys; 2014 Feb; 140(8):084306. PubMed ID: 24588168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic Distribution of S
    Duarte LJ; Bruns RE
    J Chem Theory Comput; 2022 Apr; 18(4):2437-2447. PubMed ID: 35258284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristic Substituent Effect Model for the Infrared Intensities of the X
    Duarte LJ; Richter WE; Bruns RE
    J Phys Chem A; 2023 Apr; 127(14):3114-3122. PubMed ID: 37010238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The infrared fundamental intensities of some cyanopolyynes.
    Vichietti RM; Haiduke RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 May; 90():1-11. PubMed ID: 22297091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QTAIM charge-charge flux-dipole flux models for the infrared fundamental intensities of the fluorochloromethanes.
    da Silva JV; Haiduke RL; Bruns RE
    J Phys Chem A; 2006 Apr; 110(14):4839-45. PubMed ID: 16599453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.