These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28968515)

  • 1. Closing gaps in brain disease-from overlapping genetic architecture to common motifs of synapse dysfunction.
    Roeper J
    Curr Opin Neurobiol; 2018 Feb; 48():45-51. PubMed ID: 28968515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of homeostatic plasticity in the excitatory synapse.
    Fernandes D; Carvalho AL
    J Neurochem; 2016 Dec; 139(6):973-996. PubMed ID: 27241695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unifying hypothesis for delirium and hospital-acquired weakness as synaptic dysfunctions.
    Jarquin-Valdivia AA; Major RJ
    Med Hypotheses; 2019 Mar; 124():105-109. PubMed ID: 30798902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptopathies: synaptic dysfunction in neurological disorders - A review from students to students.
    Lepeta K; Lourenco MV; Schweitzer BC; Martino Adami PV; Banerjee P; Catuara-Solarz S; de La Fuente Revenga M; Guillem AM; Haidar M; Ijomone OM; Nadorp B; Qi L; Perera ND; Refsgaard LK; Reid KM; Sabbar M; Sahoo A; Schaefer N; Sheean RK; Suska A; Verma R; Vicidomini C; Wright D; Zhang XD; Seidenbecher C
    J Neurochem; 2016 Sep; 138(6):785-805. PubMed ID: 27333343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presynaptic protein homeostasis and neuronal function.
    Wang YC; Lauwers E; Verstreken P
    Curr Opin Genet Dev; 2017 Jun; 44():38-46. PubMed ID: 28213157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synapse diversity and synaptome architecture in human genetic disorders.
    Grant SGN
    Hum Mol Genet; 2019 Nov; 28(R2):R219-R225. PubMed ID: 31348488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G2Cdb: the Genes to Cognition database.
    Croning MD; Marshall MC; McLaren P; Armstrong JD; Grant SG
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D846-51. PubMed ID: 18984621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homeostatic Plasticity Achieved by Incorporation of Random Fluctuations and Soft-Bounded Hebbian Plasticity in Excitatory Synapses.
    Matsubara T; Uehara K
    Front Neural Circuits; 2016; 10():42. PubMed ID: 27313513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homeostatic plasticity in the CNS: synaptic and intrinsic forms.
    Desai NS
    J Physiol Paris; 2003; 97(4-6):391-402. PubMed ID: 15242651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale synapse organization and dysfunction in neurodevelopmental disorders.
    Zieger HL; Choquet D
    Neurobiol Dis; 2021 Oct; 158():105453. PubMed ID: 34314857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell adhesion and homeostatic synaptic plasticity.
    Thalhammer A; Cingolani LA
    Neuropharmacology; 2014 Mar; 78():23-30. PubMed ID: 23542441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autophagy in synaptic development, function, and pathology.
    Shen DN; Zhang LH; Wei EQ; Yang Y
    Neurosci Bull; 2015 Aug; 31(4):416-26. PubMed ID: 26139541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maintenance of synaptic stability requires calcium-independent phospholipase A₂ activity.
    Allyson J; Bi X; Baudry M; Massicotte G
    Neural Plast; 2012; 2012():569149. PubMed ID: 22685677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of DSCAM in the regulation of synaptic plasticity: possible involvement in neuropsychiatric disorders.
    Stachowicz K
    Acta Neurobiol Exp (Wars); 2018; 78(3):210-219. PubMed ID: 30295678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autophagy and proteostasis in the control of synapse aging and disease.
    Liang Y; Sigrist S
    Curr Opin Neurobiol; 2018 Feb; 48():113-121. PubMed ID: 29274917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local apoptotic-like mechanisms underlie complement-mediated synaptic pruning.
    Györffy BA; Kun J; Török G; Bulyáki É; Borhegyi Z; Gulyássy P; Kis V; Szocsics P; Micsonai A; Matkó J; Drahos L; Juhász G; Kékesi KA; Kardos J
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6303-6308. PubMed ID: 29844190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Neuroplastin adhesion molecules: key regulators of neuronal plasticity and synaptic function.
    Beesley PW; Herrera-Molina R; Smalla KH; Seidenbecher C
    J Neurochem; 2014 Nov; 131(3):268-83. PubMed ID: 25040546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurodevelopmental synaptopathies: Insights from behaviour in rodent models of synapse gene mutations.
    Luo J; Norris RH; Gordon SL; Nithianantharajah J
    Prog Neuropsychopharmacol Biol Psychiatry; 2018 Jun; 84(Pt B):424-439. PubMed ID: 29217145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radix Puerariae modulates glutamatergic synaptic architecture and potentiates functional synaptic plasticity in primary hippocampal neurons.
    Bhuiyan MMH; Haque MN; Mohibbullah M; Kim YK; Moon IS
    J Ethnopharmacol; 2017 Sep; 209():100-107. PubMed ID: 28734961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disorders.
    Neniskyte U; Gross CT
    Nat Rev Neurosci; 2017 Nov; 18(11):658-670. PubMed ID: 28931944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.