These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28968557)

  • 1. A new unified framework for the early detection of the progression to diabetic retinopathy from fundus images.
    Leontidis G; Al-Diri B; Hunter A
    Comput Biol Med; 2017 Nov; 90():98-115. PubMed ID: 28968557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic detection of microaneurysms in retinal fundus images.
    Wu B; Zhu W; Shi F; Zhu S; Chen X
    Comput Med Imaging Graph; 2017 Jan; 55():106-112. PubMed ID: 27595214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy.
    S K S; P A
    J Med Syst; 2017 Nov; 41(12):201. PubMed ID: 29124453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of geometric features as biomarkers of diabetic retinopathy for characterizing the retinal vascular changes during the progression of diabetes.
    Leontidis G; Al-Diri B; Wigdahl J; Hunter A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5255-9. PubMed ID: 26737477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinal image analysis for disease screening through local tetra patterns.
    Porwal P; Pachade S; Kokare M; Giancardo L; Mériaudeau F
    Comput Biol Med; 2018 Nov; 102():200-210. PubMed ID: 30308336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-aided diagnosis of diabetic retinopathy: a review.
    Mookiah MR; Acharya UR; Chua CK; Lim CM; Ng EY; Laude A
    Comput Biol Med; 2013 Dec; 43(12):2136-55. PubMed ID: 24290931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimodal learning via trilogy of skip-connection deep networks for diabetic retinopathy risk progression identification.
    Hua CH; Huynh-The T; Kim K; Yu SY; Le-Tien T; Park GH; Bang J; Khan WA; Bae SH; Lee S
    Int J Med Inform; 2019 Dec; 132():103926. PubMed ID: 31605882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image.
    Xu K; Feng D; Mi H
    Molecules; 2017 Nov; 22(12):. PubMed ID: 29168750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated lesion detectors in retinal fundus images.
    Figueiredo IN; Kumar S; Oliveira CM; Ramos JD; Engquist B
    Comput Biol Med; 2015 Nov; 66():47-65. PubMed ID: 26378502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nested U-Net for Segmentation of Red Lesions in Retinal Fundus Images and Sub-image Classification for Removal of False Positives.
    Kundu S; Karale V; Ghorai G; Sarkar G; Ghosh S; Dhara AK
    J Digit Imaging; 2022 Oct; 35(5):1111-1119. PubMed ID: 35474556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinguising Proof of Diabetic Retinopathy Detection by Hybrid Approaches in Two Dimensional Retinal Fundus Images.
    S K; D M
    J Med Syst; 2019 May; 43(6):173. PubMed ID: 31069550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated classification of diabetic retinopathy through reliable feature selection.
    Gayathri S; Gopi VP; Palanisamy P
    Phys Eng Sci Med; 2020 Sep; 43(3):927-945. PubMed ID: 32648111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features.
    Abbas Q; Fondon I; Sarmiento A; Jiménez S; Alemany P
    Med Biol Eng Comput; 2017 Nov; 55(11):1959-1974. PubMed ID: 28353133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of foveal avascular zone in diabetic retinopathy digital fundus images.
    Ahmad Fadzil MH; Izhar LI; Nugroho HA
    Comput Biol Med; 2010 Jul; 40(7):657-64. PubMed ID: 20573343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review on the Extraction of Quantitative Retinal Microvascular Image Feature.
    Kipli K; Hoque ME; Lim LT; Mahmood MH; Sahari SK; Sapawi R; Rajaee N; Joseph A
    Comput Math Methods Med; 2018; 2018():4019538. PubMed ID: 30065780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.
    Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR
    JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel diagnostic information based framework for super-resolution of retinal fundus images.
    Das V; Dandapat S; Bora PK
    Comput Med Imaging Graph; 2019 Mar; 72():22-33. PubMed ID: 30772075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning for diabetic retinopathy detection and classification based on fundus images: A review.
    Tsiknakis N; Theodoropoulos D; Manikis G; Ktistakis E; Boutsora O; Berto A; Scarpa F; Scarpa A; Fotiadis DI; Marias K
    Comput Biol Med; 2021 Aug; 135():104599. PubMed ID: 34247130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Microaneurysms in Fundus Images Based on an Attention Mechanism.
    Zhang L; Feng S; Duan G; Li Y; Liu G
    Genes (Basel); 2019 Oct; 10(10):. PubMed ID: 31627420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of early diabetic retinopathy by computer processing of fundus images--a preliminary study.
    Gilchrist J
    Ophthalmic Physiol Opt; 1987; 7(4):393-9. PubMed ID: 3454914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.