These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28968641)

  • 1. MemBrain-contact 2.0: a new two-stage machine learning model for the prediction enhancement of transmembrane protein residue contacts in the full chain.
    Yang J; Shen HB
    Bioinformatics; 2018 Jan; 34(2):230-238. PubMed ID: 28968641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MemBrain: An Easy-to-Use Online Webserver for Transmembrane Protein Structure Prediction.
    Yin X; Yang J; Xiao F; Yang Y; Shen HB
    Nanomicro Lett; 2018; 10(1):2. PubMed ID: 30393651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. R2C: improving ab initio residue contact map prediction using dynamic fusion strategy and Gaussian noise filter.
    Yang J; Jin QY; Zhang B; Shen HB
    Bioinformatics; 2016 Aug; 32(16):2435-43. PubMed ID: 27153618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-accuracy prediction of transmembrane inter-helix contacts and application to GPCR 3D structure modeling.
    Yang J; Jang R; Zhang Y; Shen HB
    Bioinformatics; 2013 Oct; 29(20):2579-87. PubMed ID: 23946502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction Enhancement of Residue Real-Value Relative Accessible Surface Area in Transmembrane Helical Proteins by Solving the Output Preference Problem of Machine Learning-Based Predictors.
    Xiao F; Shen HB
    J Chem Inf Model; 2015 Nov; 55(11):2464-74. PubMed ID: 26455366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
    Adhikari B; Hou J; Cheng J
    Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topology Prediction Improvement of α-helical Transmembrane Proteins Through Helix-tail Modeling and Multiscale Deep Learning Fusion.
    Feng SH; Zhang WX; Yang J; Yang Y; Shen HB
    J Mol Biol; 2020 Feb; 432(4):1279-1296. PubMed ID: 31870850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MemBrain: improving the accuracy of predicting transmembrane helices.
    Shen H; Chou JJ
    PLoS One; 2008 Jun; 3(6):e2399. PubMed ID: 18545655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins.
    Jones DT; Singh T; Kosciolek T; Tetchner S
    Bioinformatics; 2015 Apr; 31(7):999-1006. PubMed ID: 25431331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks.
    Fuchs A; Kirschner A; Frishman D
    Proteins; 2009 Mar; 74(4):857-71. PubMed ID: 18704938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving accuracy of protein contact prediction using balanced network deconvolution.
    Sun HP; Huang Y; Wang XF; Zhang Y; Shen HB
    Proteins; 2015 Mar; 83(3):485-96. PubMed ID: 25524593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.
    Zhou H; Yang Y; Shen HB
    Bioinformatics; 2017 Mar; 33(6):843-853. PubMed ID: 27993784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks.
    Hanson J; Paliwal K; Litfin T; Yang Y; Zhou Y
    Bioinformatics; 2018 Dec; 34(23):4039-4045. PubMed ID: 29931279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
    Adhikari B; Hou J; Cheng J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. COMTOP: Protein Residue-Residue Contact Prediction through Mixed Integer Linear Optimization.
    Reza MS; Zhang H; Hossain MT; Jin L; Feng S; Wei Y
    Membranes (Basel); 2021 Jun; 11(7):. PubMed ID: 34209399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep architectures for protein contact map prediction.
    Di Lena P; Nagata K; Baldi P
    Bioinformatics; 2012 Oct; 28(19):2449-57. PubMed ID: 22847931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks.
    Li Y; Hu J; Zhang C; Yu DJ; Zhang Y
    Bioinformatics; 2019 Nov; 35(22):4647-4655. PubMed ID: 31070716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting protein residue-residue contacts using random forests and deep networks.
    Luttrell J; Liu T; Zhang C; Wang Z
    BMC Bioinformatics; 2019 Mar; 20(Suppl 2):100. PubMed ID: 30871477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep learning framework for improving long-range residue-residue contact prediction using a hierarchical strategy.
    Xiong D; Zeng J; Gong H
    Bioinformatics; 2017 Sep; 33(17):2675-2683. PubMed ID: 28472263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.