These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 28968645)

  • 1. Kfits: a software framework for fitting and cleaning outliers in kinetic measurements.
    Rimon O; Reichmann D
    Bioinformatics; 2018 Jan; 34(1):129-130. PubMed ID: 28968645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Goldilocks: a tool for identifying genomic regions that are 'just right'.
    Nicholls SM; Clare A; Randall JC
    Bioinformatics; 2016 Jul; 32(13):2047-9. PubMed ID: 27153673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms of protein aggregation from global fitting of kinetic models.
    Meisl G; Kirkegaard JB; Arosio P; Michaels TC; Vendruscolo M; Dobson CM; Linse S; Knowles TP
    Nat Protoc; 2016 Feb; 11(2):252-72. PubMed ID: 26741409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PySCeSToolbox: a collection of metabolic pathway analysis tools.
    Christensen CD; Hofmeyr JS; Rohwer JM
    Bioinformatics; 2018 Jan; 34(1):124-125. PubMed ID: 28968872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive network visualization in Jupyter notebooks: visJS2jupyter.
    Rosenthal SB; Len J; Webster M; Gary A; Birmingham A; Fisch KM
    Bioinformatics; 2018 Jan; 34(1):126-128. PubMed ID: 28968701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PyMethylProcess-convenient high-throughput preprocessing workflow for DNA methylation data.
    Levy JJ; Titus AJ; Salas LA; Christensen BC
    Bioinformatics; 2019 Dec; 35(24):5379-5381. PubMed ID: 31368477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SBbadger: biochemical reaction networks with definable degree distributions.
    Kochen MA; Wiley HS; Feng S; Sauro HM
    Bioinformatics; 2022 Nov; 38(22):5064-5072. PubMed ID: 36111865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symbolic kinetic models in python (SKiMpy): intuitive modeling of large-scale biological kinetic models.
    Weilandt DR; Salvy P; Masid M; Fengos G; Denhardt-Erikson R; Hosseini Z; Hatzimanikatis V
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36495209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lemon: a framework for rapidly mining structural information from the Protein Data Bank.
    Fine J; Chopra G
    Bioinformatics; 2019 Oct; 35(20):4165-4167. PubMed ID: 30873531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal water networks in protein cavities with GAsol and 3D-RISM.
    Fusani L; Wall I; Palmer D; Cortes A
    Bioinformatics; 2018 Jun; 34(11):1947-1948. PubMed ID: 29346514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ChemTreeMap: an interactive map of biochemical similarity in molecular datasets.
    Lu J; Carlson HA
    Bioinformatics; 2016 Dec; 32(23):3584-3592. PubMed ID: 27515740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio Simulators: a web UI for biological simulation.
    Pedersen M; Oury N; Gravill C; Phillips A
    Bioinformatics; 2014 May; 30(10):1491-2. PubMed ID: 24470571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ssbio: a Python framework for structural systems biology.
    Mih N; Brunk E; Chen K; Catoiu E; Sastry A; Kavvas E; Monk JM; Zhang Z; Palsson BO
    Bioinformatics; 2018 Jun; 34(12):2155-2157. PubMed ID: 29444205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenopolis: an open platform for harmonization and analysis of genetic and phenotypic data.
    Pontikos N; Yu J; Moghul I; Withington L; Blanco-Kelly F; Vulliamy T; Wong TLE; Murphy C; Cipriani V; Fiorentino A; Arno G; Greene D; Jacobsen JOB; Clark T; Gregory DS; Nemeth AM; Halford S; Inglehearn CF; Downes S; Black GC; Webster AR; Hardcastle AJ; ; Plagnol V
    Bioinformatics; 2017 Aug; 33(15):2421-2423. PubMed ID: 28334266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GPU-powered model analysis with PySB/cupSODA.
    Harris LA; Nobile MS; Pino JC; Lubbock ALR; Besozzi D; Mauri G; Cazzaniga P; Lopez CF
    Bioinformatics; 2017 Nov; 33(21):3492-3494. PubMed ID: 28666314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhapsody: predicting the pathogenicity of human missense variants.
    Ponzoni L; Peñaherrera DA; Oltvai ZN; Bahar I
    Bioinformatics; 2020 May; 36(10):3084-3092. PubMed ID: 32101277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rabifier2: an improved bioinformatic classifier of Rab GTPases.
    Surkont J; Diekmann Y; Pereira-Leal JB
    Bioinformatics; 2017 Feb; 33(4):568-570. PubMed ID: 27797763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ISAMBARD: an open-source computational environment for biomolecular analysis, modelling and design.
    Wood CW; Heal JW; Thomson AR; Bartlett GJ; Ibarra AÁ; Brady RL; Sessions RB; Woolfson DN
    Bioinformatics; 2017 Oct; 33(19):3043-3050. PubMed ID: 28582565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assortative mixing in Protein Contact Networks and protein folding kinetics.
    Bagler G; Sinha S
    Bioinformatics; 2007 Jul; 23(14):1760-7. PubMed ID: 17519248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic generation of bioinformatics tools for predicting protein-ligand binding sites.
    Komiyama Y; Banno M; Ueki K; Saad G; Shimizu K
    Bioinformatics; 2016 Mar; 32(6):901-7. PubMed ID: 26545824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.