These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 28968648)

  • 21. Inferior parietal and right frontal contributions to trial-by-trial adaptations of attention to memory.
    Kizilirmak JM; Rösler F; Bien S; Khader PH
    Brain Res; 2015 Jul; 1614():14-27. PubMed ID: 25892601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal dynamics of visual working memory.
    Sobczak-Edmans M; Ng THB; Chan YC; Chew E; Chuang KH; Chen SHA
    Neuroimage; 2016 Jan; 124(Pt A):1021-1030. PubMed ID: 26427643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional dissociation between anterior and posterior temporal cortical regions during retrieval of remote memory.
    Watanabe T; Kimura HM; Hirose S; Wada H; Imai Y; Machida T; Shirouzu I; Miyashita Y; Konishi S
    J Neurosci; 2012 Jul; 32(28):9659-70. PubMed ID: 22787051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oscillations during observations: Dynamic oscillatory networks serving visuospatial attention.
    Wiesman AI; Heinrichs-Graham E; Proskovec AL; McDermott TJ; Wilson TW
    Hum Brain Mapp; 2017 Oct; 38(10):5128-5140. PubMed ID: 28714584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emotion regulation and amygdala-precuneus connectivity: Focusing on attentional deployment.
    Ferri J; Schmidt J; Hajcak G; Canli T
    Cogn Affect Behav Neurosci; 2016 Dec; 16(6):991-1002. PubMed ID: 27444935
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bottom-up sensory processing can induce negative BOLD responses and reduce functional connectivity in nodes of the default mode-like network in rats.
    Hinz R; Peeters LM; Shah D; Missault S; Belloy M; Vanreusel V; Malekzadeh M; Verhoye M; Van der Linden A; Keliris GA
    Neuroimage; 2019 Aug; 197():167-176. PubMed ID: 31029872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cortical mechanisms of cognitive control for shifting attention in vision and working memory.
    Tamber-Rosenau BJ; Esterman M; Chiu YC; Yantis S
    J Cogn Neurosci; 2011 Oct; 23(10):2905-19. PubMed ID: 21291314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural substrates of successful working memory and long-term memory formation in a relational spatial memory task.
    Bergmann HC; Daselaar SM; Fernández G; Kessels RP
    Cogn Process; 2016 Nov; 17(4):377-387. PubMed ID: 27350001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Youthful Brains in Older Adults: Preserved Neuroanatomy in the Default Mode and Salience Networks Contributes to Youthful Memory in Superaging.
    Sun FW; Stepanovic MR; Andreano J; Barrett LF; Touroutoglou A; Dickerson BC
    J Neurosci; 2016 Sep; 36(37):9659-68. PubMed ID: 27629716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Common and unique neural activations in autobiographical, episodic, and semantic retrieval.
    Burianova H; Grady CL
    J Cogn Neurosci; 2007 Sep; 19(9):1520-34. PubMed ID: 17714013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. fMRI-guided TMS on cortical eye fields: the frontal but not intraparietal eye fields regulate the coupling between visuospatial attention and eye movements.
    Van Ettinger-Veenstra HM; Huijbers W; Gutteling TP; Vink M; Kenemans JL; Neggers SF
    J Neurophysiol; 2009 Dec; 102(6):3469-80. PubMed ID: 19812293
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Imagery and retrieval of auditory and visual information: neural correlates of successful and unsuccessful performance.
    Huijbers W; Pennartz CM; Rubin DC; Daselaar SM
    Neuropsychologia; 2011 Jun; 49(7):1730-40. PubMed ID: 21396384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effective connectivity of the human cerebellum during visual attention.
    Kellermann T; Regenbogen C; De Vos M; Mößnang C; Finkelmeyer A; Habel U
    J Neurosci; 2012 Aug; 32(33):11453-60. PubMed ID: 22895727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brain regions modulated during covert visual attention in the macaque.
    Bogadhi AR; Bollimunta A; Leopold DA; Krauzlis RJ
    Sci Rep; 2018 Oct; 8(1):15237. PubMed ID: 30323289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differentiating the functional contributions of resting connectivity networks to memory decision-making: fMRI support for multistage control processes.
    Mill RD; Cavin I; O'Connor AR
    J Cogn Neurosci; 2015 Aug; 27(8):1617-32. PubMed ID: 25803597
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Associative encoding and retrieval are predicted by functional connectivity in distinct hippocampal area CA1 pathways.
    Duncan K; Tompary A; Davachi L
    J Neurosci; 2014 Aug; 34(34):11188-98. PubMed ID: 25143600
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A common functional brain network for autobiographical, episodic, and semantic memory retrieval.
    Burianova H; McIntosh AR; Grady CL
    Neuroimage; 2010 Jan; 49(1):865-74. PubMed ID: 19744566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intrinsic functional connectivity predicts individual differences in distractibility.
    Poole VN; Robinson ME; Singleton O; DeGutis J; Milberg WP; McGlinchey RE; Salat DH; Esterman M
    Neuropsychologia; 2016 Jun; 86():176-82. PubMed ID: 27132070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Top-down and bottom-up attention to memory: a hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval.
    Ciaramelli E; Grady CL; Moscovitch M
    Neuropsychologia; 2008; 46(7):1828-51. PubMed ID: 18471837
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visual Learning Induces Changes in Resting-State fMRI Multivariate Pattern of Information.
    Guidotti R; Del Gratta C; Baldassarre A; Romani GL; Corbetta M
    J Neurosci; 2015 Jul; 35(27):9786-98. PubMed ID: 26156982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.