These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 28968655)

  • 1. Facilitating prediction of adverse drug reactions by using knowledge graphs and multi-label learning models.
    Muñoz E; Novácek V; Vandenbussche PY
    Brief Bioinform; 2019 Jan; 20(1):190-202. PubMed ID: 28968655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting adverse drug reactions of combined medication from heterogeneous pharmacologic databases.
    Zheng Y; Peng H; Zhang X; Zhao Z; Yin J; Li J
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):517. PubMed ID: 30598065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supervised signal detection for adverse drug reactions in medication dispensing data.
    Hoang T; Liu J; Roughead E; Pratt N; Li J
    Comput Methods Programs Biomed; 2018 Jul; 161():25-38. PubMed ID: 29852965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational models for the prediction of adverse cardiovascular drug reactions.
    Jamal S; Ali W; Nagpal P; Grover S; Grover A
    J Transl Med; 2019 May; 17(1):171. PubMed ID: 31118067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug knowledge bases and their applications in biomedical informatics research.
    Zhu Y; Elemento O; Pathak J; Wang F
    Brief Bioinform; 2019 Jul; 20(4):1308-1321. PubMed ID: 29304188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of adverse drug reactions using demographic and non-clinical drug characteristics in FAERS data.
    Farnoush A; Sedighi-Maman Z; Rasoolian B; Heath JJ; Fallah B
    Sci Rep; 2024 Oct; 14(1):23636. PubMed ID: 39384938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-driven prediction of adverse drug reactions induced by drug-drug interactions.
    Liu R; AbdulHameed MDM; Kumar K; Yu X; Wallqvist A; Reifman J
    BMC Pharmacol Toxicol; 2017 Jun; 18(1):44. PubMed ID: 28595649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A similarity-based method for prediction of drug side effects with heterogeneous information.
    Zhao X; Chen L; Lu J
    Math Biosci; 2018 Dec; 306():136-144. PubMed ID: 30296417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting drug side effects by multi-label learning and ensemble learning.
    Zhang W; Liu F; Luo L; Zhang J
    BMC Bioinformatics; 2015 Nov; 16():365. PubMed ID: 26537615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Adverse Drug Reactions on Distributed Health Data using Federated Learning.
    Choudhury O; Park Y; Salonidis T; Gkoulalas-Divanis A; Sylla I; Das AK
    AMIA Annu Symp Proc; 2019; 2019():313-322. PubMed ID: 32308824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A survey on adverse drug reaction studies: data, tasks and machine learning methods.
    Nguyen DA; Nguyen CH; Mamitsuka H
    Brief Bioinform; 2021 Jan; 22(1):164-177. PubMed ID: 31838499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Next-Generation Machine Learning for Biological Networks.
    Camacho DM; Collins KM; Powers RK; Costello JC; Collins JJ
    Cell; 2018 Jun; 173(7):1581-1592. PubMed ID: 29887378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse similarity and reliable negative samples for drug side-effect prediction.
    Zheng Y; Peng H; Ghosh S; Lan C; Li J
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):554. PubMed ID: 30717666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adverse Drug Reaction Predictions Using Stacking Deep Heterogeneous Information Network Embedding Approach.
    Hu B; Wang H; Wang L; Yuan W
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30518099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies.
    Song D; Chen Y; Min Q; Sun Q; Ye K; Zhou C; Yuan S; Sun Z; Liao J
    J Clin Pharm Ther; 2019 Apr; 44(2):268-275. PubMed ID: 30565313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hierarchical anatomical classification schema for prediction of phenotypic side effects.
    Wadhwa S; Gupta A; Dokania S; Kanji R; Bagler G
    PLoS One; 2018; 13(3):e0193959. PubMed ID: 29494708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Knowledge Graphs in Pharmacovigilance: A Scoping Review.
    Hauben M; Rafi M; Abdelaziz I; Hassanzadeh O
    Clin Ther; 2024 Jul; 46(7):544-554. PubMed ID: 38981792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The contribution of Ghanaian patients to the reporting of adverse drug reactions: a quantitative and qualitative study.
    Jacobs TG; Hilda Ampadu H; Hoekman J; Dodoo ANO; Mantel-Teeuwisse AK
    BMC Public Health; 2018 Dec; 18(1):1384. PubMed ID: 30563498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Prediction of Drug-Target Interactions Using Self-Paced Learning with Collaborative Matrix Factorization.
    Xia LY; Yang ZY; Zhang H; Liang Y
    J Chem Inf Model; 2019 Jul; 59(7):3340-3351. PubMed ID: 31260620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural Multi-Task Learning for Adverse Drug Reaction Extraction.
    Liu F; Zheng X; Yu H; Tjia J
    AMIA Annu Symp Proc; 2020; 2020():756-762. PubMed ID: 33936450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.