These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28968702)

  • 1. A broken promise: microbiome differential abundance methods do not control the false discovery rate.
    Hawinkel S; Mattiello F; Bijnens L; Thas O
    Brief Bioinform; 2019 Jan; 20(1):210-221. PubMed ID: 28968702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies.
    Thorsen J; Brejnrod A; Mortensen M; Rasmussen MA; Stokholm J; Al-Soud WA; Sørensen S; Bisgaard H; Waage J
    Microbiome; 2016 Nov; 4(1):62. PubMed ID: 27884206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MIDASim: a fast and simple simulator for realistic microbiome data.
    He M; Zhao N; Satten GA
    Microbiome; 2024 Jul; 12(1):135. PubMed ID: 39039570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correcting for batch effects in case-control microbiome studies.
    Gibbons SM; Duvallet C; Alm EJ
    PLoS Comput Biol; 2018 Apr; 14(4):e1006102. PubMed ID: 29684016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. metamicrobiomeR: an R package for analysis of microbiome relative abundance data using zero-inflated beta GAMLSS and meta-analysis across studies using random effects models.
    Ho NT; Li F; Wang S; Kuhn L
    BMC Bioinformatics; 2019 Apr; 20(1):188. PubMed ID: 30991942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome.
    Allali I; Arnold JW; Roach J; Cadenas MB; Butz N; Hassan HM; Koci M; Ballou A; Mendoza M; Ali R; Azcarate-Peril MA
    BMC Microbiol; 2017 Sep; 17(1):194. PubMed ID: 28903732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive evaluation of microbial differential abundance analysis methods: current status and potential solutions.
    Yang L; Chen J
    Microbiome; 2022 Aug; 10(1):130. PubMed ID: 35986393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A realistic benchmark for differential abundance testing and confounder adjustment in human microbiome studies.
    Wirbel J; Essex M; Forslund SK; Zeller G
    Genome Biol; 2024 Sep; 25(1):247. PubMed ID: 39322959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. fastCCLasso: a fast and efficient algorithm for estimating correlation matrix from compositional data.
    Zhang S; Fang H; Hu T
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38730540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation and association analyses in microbiome study integrating multiomics in health and disease.
    Xia Y
    Prog Mol Biol Transl Sci; 2020; 171():309-491. PubMed ID: 32475527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating differential abundance methods in microbiome data: A benchmark study.
    Cappellato M; Baruzzo G; Di Camillo B
    PLoS Comput Biol; 2022 Sep; 18(9):e1010467. PubMed ID: 36074761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative binomial mixed models for analyzing microbiome count data.
    Zhang X; Mallick H; Tang Z; Zhang L; Cui X; Benson AK; Yi N
    BMC Bioinformatics; 2017 Jan; 18(1):4. PubMed ID: 28049409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Practical considerations for sampling and data analysis in contemporary metagenomics-based environmental studies.
    Staley C; Sadowsky MJ
    J Microbiol Methods; 2018 Nov; 154():14-18. PubMed ID: 30287354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rank normalization empowers a t-test for microbiome differential abundance analysis while controlling for false discoveries.
    Davis ML; Huang Y; Wang K
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SimSeq: a nonparametric approach to simulation of RNA-sequence datasets.
    Benidt S; Nettleton D
    Bioinformatics; 2015 Jul; 31(13):2131-40. PubMed ID: 25725090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A highly adaptive microbiome-based association test for survival traits.
    Koh H; Livanos AE; Blaser MJ; Li H
    BMC Genomics; 2018 Mar; 19(1):210. PubMed ID: 29558893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An adaptive independence test for microbiome community data.
    Song Y; Zhao H; Wang T
    Biometrics; 2020 Jun; 76(2):414-426. PubMed ID: 31538660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A small-sample multivariate kernel machine test for microbiome association studies.
    Zhan X; Tong X; Zhao N; Maity A; Wu MC; Chen J
    Genet Epidemiol; 2017 Apr; 41(3):210-220. PubMed ID: 28019040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarking differential abundance analysis methods for correlated microbiome sequencing data.
    Yang L; Chen J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36617187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimisation of methods for bacterial skin microbiome investigation: primer selection and comparison of the 454 versus MiSeq platform.
    Castelino M; Eyre S; Moat J; Fox G; Martin P; Ho P; Upton M; Barton A
    BMC Microbiol; 2017 Jan; 17(1):23. PubMed ID: 28109256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.