BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 28968726)

  • 1. GradDock: rapid simulation and tailored ranking functions for peptide-MHC Class I docking.
    Kyeong HH; Choi Y; Kim HS
    Bioinformatics; 2018 Feb; 34(3):469-476. PubMed ID: 28968726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General Prediction of Peptide-MHC Binding Modes Using Incremental Docking: A Proof of Concept.
    Antunes DA; Devaurs D; Moll M; Lizée G; Kavraki LE
    Sci Rep; 2018 Mar; 8(1):4327. PubMed ID: 29531253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico prediction of peptide binding affinity to class I mouse major histocompatibility complexes: a comparative molecular similarity index analysis (CoMSIA) study.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    J Chem Inf Model; 2005; 45(5):1415-23. PubMed ID: 16180918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of peptide binding to a major histocompatibility complex class I molecule based on docking simulation.
    Ishikawa T
    J Comput Aided Mol Des; 2016 Oct; 30(10):875-887. PubMed ID: 27624584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes.
    Bordner AJ; Abagyan R
    Proteins; 2006 May; 63(3):512-26. PubMed ID: 16470819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Prediction of Peptide-MHC Binding Modes.
    Perez MAS; Cuendet MA; Röhrig UF; Michielin O; Zoete V
    Methods Mol Biol; 2022; 2405():245-282. PubMed ID: 35298818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DynaDom: structure-based prediction of T cell receptor inter-domain and T cell receptor-peptide-MHC (class I) association angles.
    Hoffmann T; Marion A; Antes I
    BMC Struct Biol; 2017 Feb; 17(1):2. PubMed ID: 28148269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural prediction of peptides binding to MHC class I molecules.
    Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS
    Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity.
    Harndahl M; Rasmussen M; Roder G; Dalgaard Pedersen I; Sørensen M; Nielsen M; Buus S
    Eur J Immunol; 2012 Jun; 42(6):1405-16. PubMed ID: 22678897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DockTope: a Web-based tool for automated pMHC-I modelling.
    Rigo MM; Antunes DA; Vaz de Freitas M; Fabiano de Almeida Mendes M; Meira L; Sinigaglia M; Vieira GF
    Sci Rep; 2015 Dec; 5():18413. PubMed ID: 26674250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the structure of bound peptide ligands to major histocompatibility complex.
    Tong JC; Tan TW; Ranganathan S
    Protein Sci; 2004 Sep; 13(9):2523-32. PubMed ID: 15322290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for prediction of peptide binding to MHC molecules: a comparative study.
    Yu K; Petrovsky N; Schönbach C; Koh JY; Brusic V
    Mol Med; 2002 Mar; 8(3):137-48. PubMed ID: 12142545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subangstrom accuracy in pHLA-I modeling by Rosetta FlexPepDock refinement protocol.
    Liu T; Pan X; Chao L; Tan W; Qu S; Yang L; Wang B; Mei H
    J Chem Inf Model; 2014 Aug; 54(8):2233-42. PubMed ID: 25050981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. T cell receptor/peptide/MHC molecular characterization and standardized pMHC contact sites in IMGT/3Dstructure-DB.
    Kaas Q; Lefranc MP
    In Silico Biol; 2005; 5(5-6):505-28. PubMed ID: 16268793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets.
    Nielsen M; Andreatta M
    Genome Med; 2016 Mar; 8(1):33. PubMed ID: 27029192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated benchmarking of peptide-MHC class I binding predictions.
    Trolle T; Metushi IG; Greenbaum JA; Kim Y; Sidney J; Lund O; Sette A; Peters B; Nielsen M
    Bioinformatics; 2015 Jul; 31(13):2174-81. PubMed ID: 25717196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Static energy analysis of MHC class I and class II peptide-binding affinity.
    Davies MN; Flower DR
    Methods Mol Biol; 2007; 409():309-20. PubMed ID: 18450011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DynaPred: a structure and sequence based method for the prediction of MHC class I binding peptide sequences and conformations.
    Antes I; Siu SW; Lengauer T
    Bioinformatics; 2006 Jul; 22(14):e16-24. PubMed ID: 16873467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MHC-BPS: MHC-binder prediction server for identifying peptides of flexible lengths from sequence-derived physicochemical properties.
    Cui J; Han LY; Lin HH; Tang ZQ; Jiang L; Cao ZW; Chen YZ
    Immunogenetics; 2006 Aug; 58(8):607-13. PubMed ID: 16832638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.