These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28968726)

  • 21. Toward prediction of class II mouse major histocompatibility complex peptide binding affinity: in silico bioinformatic evaluation using partial least squares, a robust multivariate statistical technique.
    Hattotuwagama CK; Toseland CP; Guan P; Taylor DJ; Hemsley SL; Doytchinova IA; Flower DR
    J Chem Inf Model; 2006; 46(3):1491-502. PubMed ID: 16711768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New horizons in mouse immunoinformatics: reliable in silico prediction of mouse class I histocompatibility major complex peptide binding affinity.
    Hattotuwagama CK; Guan P; Doytchinova IA; Flower DR
    Org Biomol Chem; 2004 Nov; 2(22):3274-83. PubMed ID: 15534705
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MPID-T2: a database for sequence-structure-function analyses of pMHC and TR/pMHC structures.
    Khan JM; Cheruku HR; Tong JC; Ranganathan S
    Bioinformatics; 2011 Apr; 27(8):1192-3. PubMed ID: 21349870
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gapped sequence alignment using artificial neural networks: application to the MHC class I system.
    Andreatta M; Nielsen M
    Bioinformatics; 2016 Feb; 32(4):511-7. PubMed ID: 26515819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In silico prediction of peptide-MHC binding affinity using SVRMHC.
    Liu W; Wan J; Meng X; Flower DR; Li T
    Methods Mol Biol; 2007; 409():283-91. PubMed ID: 18450008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Web-accessible molecular modeling with Rosetta: The Rosetta Online Server that Includes Everyone (ROSIE).
    Moretti R; Lyskov S; Das R; Meiler J; Gray JJ
    Protein Sci; 2018 Jan; 27(1):259-268. PubMed ID: 28960691
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Designing High Binding Affinity Peptides for MHC Class I Using MAM: An In Silico Approach.
    Zhang YW
    Methods Mol Biol; 2024; 2809():263-274. PubMed ID: 38907903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Learning MHC I--peptide binding.
    Jojic N; Reyes-Gomez M; Heckerman D; Kadie C; Schueler-Furman O
    Bioinformatics; 2006 Jul; 22(14):e227-35. PubMed ID: 16873476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Information-Driven Docking for TCR-pMHC Complex Prediction.
    Peacock T; Chain B
    Front Immunol; 2021; 12():686127. PubMed ID: 34177934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational Modeling of T Cell Receptor Complexes.
    Riley TP; Singh NK; Pierce BG; Weng Z; Baker BM
    Methods Mol Biol; 2016; 1414():319-40. PubMed ID: 27094300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Knowledge-based structure prediction of MHC class I bound peptides: a study of 23 complexes.
    Schueler-Furman O; Elber R; Margalit H
    Fold Des; 1998; 3(6):549-64. PubMed ID: 9889166
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of enhanced agonists through the use of a new virtual screening method: application to peptides that bind class I major histocompatibility complex (MHC) molecules.
    Madurga S; Belda I; LlorĂ  X; Giralt E
    Protein Sci; 2005 Aug; 14(8):2069-79. PubMed ID: 16046628
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A combined bioinformatic approach oriented to the analysis and design of peptides with high affinity to MHC class I molecules.
    Del Carpio CA; Hennig T; Fickel S; Yoshimori A
    Immunol Cell Biol; 2002 Jun; 80(3):286-99. PubMed ID: 12067416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EpiDOCK: a molecular docking-based tool for MHC class II binding prediction.
    Atanasova M; Patronov A; Dimitrov I; Flower DR; Doytchinova I
    Protein Eng Des Sel; 2013 Oct; 26(10):631-4. PubMed ID: 23661105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting promiscuous antigenic T cell epitopes of Mycobacterium tuberculosis mymA operon proteins binding to MHC Class I and Class II molecules.
    Saraav I; Pandey K; Sharma M; Singh S; Dutta P; Bhardwaj A; Sharma S
    Infect Genet Evol; 2016 Oct; 44():182-189. PubMed ID: 27389362
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions.
    Karosiene E; Lundegaard C; Lund O; Nielsen M
    Immunogenetics; 2012 Mar; 64(3):177-86. PubMed ID: 22009319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lessons from (co-)evolution in the docking of proteins and peptides for CAPRI Rounds 28-35.
    Yu J; Andreani J; Ochsenbein F; Guerois R
    Proteins; 2017 Mar; 85(3):378-390. PubMed ID: 27701780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Binding peptide generation for MHC Class I proteins with deep reinforcement learning.
    Chen Z; Zhang B; Guo H; Emani P; Clancy T; Jiang C; Gerstein M; Ning X; Cheng C; Min MR
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36692135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction and analysis of promiscuous T cell-epitopes derived from the vaccine candidate antigens of Leishmania donovani binding to MHC class-II alleles using in silico approach.
    Kashyap M; Jaiswal V; Farooq U
    Infect Genet Evol; 2017 Sep; 53():107-115. PubMed ID: 28549876
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MetaMHC: a meta approach to predict peptides binding to MHC molecules.
    Hu X; Zhou W; Udaka K; Mamitsuka H; Zhu S
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W474-9. PubMed ID: 20483919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.