BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28968736)

  • 1. NetProphet 2.0: mapping transcription factor networks by exploiting scalable data resources.
    Kang Y; Liow HH; Maier EJ; Brent MR
    Bioinformatics; 2018 Jan; 34(2):249-257. PubMed ID: 28968736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping functional transcription factor networks from gene expression data.
    Haynes BC; Maier EJ; Kramer MH; Wang PI; Brown H; Brent MR
    Genome Res; 2013 Aug; 23(8):1319-28. PubMed ID: 23636944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NetProphet 3: a machine learning framework for transcription factor network mapping and multi-omics integration.
    Abid D; Brent MR
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36692138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ProSampler: an ultrafast and accurate motif finder in large ChIP-seq datasets for combinatory motif discovery.
    Li Y; Ni P; Zhang S; Li G; Su Z
    Bioinformatics; 2019 Nov; 35(22):4632-4639. PubMed ID: 31070745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing transcription factor combinatorics in different promoter classes and in enhancers.
    Vandel J; Cassan O; Lèbre S; Lecellier CH; Bréhélin L
    BMC Genomics; 2019 Feb; 20(1):103. PubMed ID: 30709337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RTFBSDB: an integrated framework for transcription factor binding site analysis.
    Wang Z; Martins AL; Danko CG
    Bioinformatics; 2016 Oct; 32(19):3024-6. PubMed ID: 27288497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Romulus: robust multi-state identification of transcription factor binding sites from DNase-seq data.
    Jankowski A; Tiuryn J; Prabhakar S
    Bioinformatics; 2016 Aug; 32(16):2419-26. PubMed ID: 27153645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A scalable algorithm for structure identification of complex gene regulatory network from temporal expression data.
    Gui S; Rice AP; Chen R; Wu L; Liu J; Miao H
    BMC Bioinformatics; 2017 Jan; 18(1):74. PubMed ID: 28143596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TopicNet: a framework for measuring transcriptional regulatory network change.
    Lou S; Li T; Kong X; Zhang J; Liu J; Lee D; Gerstein M
    Bioinformatics; 2020 Jul; 36(Suppl_1):i474-i481. PubMed ID: 32657410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iTAR: a web server for identifying target genes of transcription factors using ChIP-seq or ChIP-chip data.
    Yang CC; Andrews EH; Chen MH; Wang WY; Chen JJ; Gerstein M; Liu CC; Cheng C
    BMC Genomics; 2016 Aug; 17(1):632. PubMed ID: 27519564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrative approach for fine-mapping chromatin interactions.
    Jaroszewicz A; Ernst J
    Bioinformatics; 2020 Mar; 36(6):1704-1711. PubMed ID: 31742318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TSPTFBS: a Docker image for trans-species prediction of transcription factor binding sites in plants.
    Liu L; Zhang G; He S; Hu X
    Bioinformatics; 2021 Apr; 37(2):260-262. PubMed ID: 33416862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A map of direct TF-DNA interactions in the human genome.
    Gheorghe M; Sandve GK; Khan A; Chèneby J; Ballester B; Mathelier A
    Nucleic Acids Res; 2019 Feb; 47(4):e21. PubMed ID: 30517703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MOCCS: Clarifying DNA-binding motif ambiguity using ChIP-Seq data.
    Ozaki H; Iwasaki W
    Comput Biol Chem; 2016 Aug; 63():62-72. PubMed ID: 26971251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of cooperatively bound transcription factor pairs using ChIP-seq peak intensities and expectation maximization.
    Datta V; Siddharthan R; Krishna S
    PLoS One; 2018; 13(7):e0199771. PubMed ID: 30016330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis elegans.
    Brdlik CM; Niu W; Snyder M
    Methods Enzymol; 2014; 539():89-111. PubMed ID: 24581441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the problem of confounders in modeling gene expression.
    Schmidt F; Schulz MH
    Bioinformatics; 2019 Feb; 35(4):711-719. PubMed ID: 30084962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data.
    Zhang L; Xue G; Liu J; Li Q; Wang Y
    BMC Genomics; 2018 Dec; 19(Suppl 10):914. PubMed ID: 30598100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.