These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 28968753)
1. A non-negative matrix factorization based method for predicting disease-associated miRNAs in miRNA-disease bilayer network. Zhong Y; Xuan P; Wang X; Zhang T; Li J; Liu Y; Zhang W Bioinformatics; 2018 Jan; 34(2):267-277. PubMed ID: 28968753 [TBL] [Abstract][Full Text] [Related]
2. Prediction of potential disease-associated microRNAs based on random walk. Xuan P; Han K; Guo Y; Li J; Li X; Zhong Y; Zhang Z; Ding J Bioinformatics; 2015 Jun; 31(11):1805-15. PubMed ID: 25618864 [TBL] [Abstract][Full Text] [Related]
3. Inferring disease-associated microRNAs in heterogeneous networks with node attributes. Xuan P; Shen T; Wang X; Zhang T; Zhang W IEEE/ACM Trans Comput Biol Bioinform; 2018 Sep; ():. PubMed ID: 30281474 [TBL] [Abstract][Full Text] [Related]
4. Prediction of Disease-related microRNAs through Integrating Attributes of microRNA Nodes and Multiple Kinds of Connecting Edges. Xuan P; Li L; Zhang T; Zhang Y; Song Y Molecules; 2019 Aug; 24(17):. PubMed ID: 31455026 [TBL] [Abstract][Full Text] [Related]
5. A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations. Xiao Q; Luo J; Liang C; Cai J; Ding P Bioinformatics; 2018 Jan; 34(2):239-248. PubMed ID: 28968779 [TBL] [Abstract][Full Text] [Related]
6. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks. Xuan P; Sun H; Wang X; Zhang T; Pan S Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729 [TBL] [Abstract][Full Text] [Related]
7. Predicting miRNA-Disease Associations by Incorporating Projections in Low-Dimensional Space and Local Topological Information. Xuan P; Zhang Y; Zhang T; Li L; Zhao L Genes (Basel); 2019 Sep; 10(9):. PubMed ID: 31500152 [TBL] [Abstract][Full Text] [Related]
8. Prediction of potential disease-associated microRNAs using structural perturbation method. Zeng X; Liu L; Lü L; Zou Q Bioinformatics; 2018 Jul; 34(14):2425-2432. PubMed ID: 29490018 [TBL] [Abstract][Full Text] [Related]
9. DNRLMF-MDA:Predicting microRNA-Disease Associations Based on Similarities of microRNAs and Diseases. Yan C; Wang J; Ni P; Lan W; Wu FX; Pan Y IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):233-243. PubMed ID: 29990253 [TBL] [Abstract][Full Text] [Related]
10. A Novel Computational Method for the Identification of Potential miRNA-Disease Association Based on Symmetric Non-negative Matrix Factorization and Kronecker Regularized Least Square. Zhao Y; Chen X; Yin J Front Genet; 2018; 9():324. PubMed ID: 30186308 [TBL] [Abstract][Full Text] [Related]
11. Predicting miRNA-disease association based on inductive matrix completion. Chen X; Wang L; Qu J; Guan NN; Li JQ Bioinformatics; 2018 Dec; 34(24):4256-4265. PubMed ID: 29939227 [TBL] [Abstract][Full Text] [Related]
12. Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors. Xuan P; Han K; Guo M; Guo Y; Li J; Ding J; Liu Y; Dai Q; Li J; Teng Z; Huang Y PLoS One; 2013; 8(8):e70204. PubMed ID: 23950912 [TBL] [Abstract][Full Text] [Related]
13. An improved random forest-based computational model for predicting novel miRNA-disease associations. Yao D; Zhan X; Kwoh CK BMC Bioinformatics; 2019 Dec; 20(1):624. PubMed ID: 31795954 [TBL] [Abstract][Full Text] [Related]
14. Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction. Li J; Zhang S; Liu T; Ning C; Zhang Z; Zhou W Bioinformatics; 2020 Apr; 36(8):2538-2546. PubMed ID: 31904845 [TBL] [Abstract][Full Text] [Related]
15. RKNNMDA: Ranking-based KNN for MiRNA-Disease Association prediction. Chen X; Wu QF; Yan GY RNA Biol; 2017 Jul; 14(7):952-962. PubMed ID: 28421868 [TBL] [Abstract][Full Text] [Related]
16. Prediction of Potential Disease-Associated MicroRNAs by Using Neural Networks. Zeng X; Wang W; Deng G; Bing J; Zou Q Mol Ther Nucleic Acids; 2019 Jun; 16():566-575. PubMed ID: 31077936 [TBL] [Abstract][Full Text] [Related]
17. Dual Convolutional Neural Network Based Method for Predicting Disease-Related miRNAs. Xuan P; Dong Y; Guo Y; Zhang T; Liu Y Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30477152 [TBL] [Abstract][Full Text] [Related]
18. A novel approach for predicting microRNA-disease associations by unbalanced bi-random walk on heterogeneous network. Luo J; Xiao Q J Biomed Inform; 2017 Feb; 66():194-203. PubMed ID: 28104458 [TBL] [Abstract][Full Text] [Related]
19. Meta-Path Methods for Prioritizing Candidate Disease miRNAs. Zhang X; Zou Q; Rodriguez-Paton A; Zeng X IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):283-291. PubMed ID: 29990255 [TBL] [Abstract][Full Text] [Related]
20. Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Wang D; Wang J; Lu M; Song F; Cui Q Bioinformatics; 2010 Jul; 26(13):1644-50. PubMed ID: 20439255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]