BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

838 related articles for article (PubMed ID: 28969586)

  • 1. SimBA: A methodology and tools for evaluating the performance of RNA-Seq bioinformatic pipelines.
    Audoux J; Salson M; Grosset CF; Beaumeunier S; Holder JM; Commes T; Philippe N
    BMC Bioinformatics; 2017 Sep; 18(1):428. PubMed ID: 28969586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidating the editome: bioinformatics approaches for RNA editing detection.
    Diroma MA; Ciaccia L; Pesole G; Picardi E
    Brief Bioinform; 2019 Mar; 20(2):436-447. PubMed ID: 29040360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QuickRNASeq lifts large-scale RNA-seq data analyses to the next level of automation and interactive visualization.
    Zhao S; Xi L; Quan J; Xi H; Zhang Y; von Schack D; Vincent M; Zhang B
    BMC Genomics; 2016 Jan; 17():39. PubMed ID: 26747388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indel sensitive and comprehensive variant/mutation detection from RNA sequencing data for precision medicine.
    Prodduturi N; Bhagwate A; Kocher JA; Sun Z
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):67. PubMed ID: 30255803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully automated pipeline for detection of sex linked genes using RNA-Seq data.
    Michalovova M; Kubat Z; Hobza R; Vyskot B; Kejnovsky E
    BMC Bioinformatics; 2015 Mar; 16(1):78. PubMed ID: 25884927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative assessment of methods for the fusion transcripts detection from RNA-Seq data.
    Kumar S; Vo AD; Qin F; Li H
    Sci Rep; 2016 Feb; 6():21597. PubMed ID: 26862001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ChimPipe: accurate detection of fusion genes and transcription-induced chimeras from RNA-seq data.
    Rodríguez-Martín B; Palumbo E; Marco-Sola S; Griebel T; Ribeca P; Alonso G; Rastrojo A; Aguado B; Guigó R; Djebali S
    BMC Genomics; 2017 Jan; 18(1):7. PubMed ID: 28049418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grape RNA-Seq analysis pipeline environment.
    Knowles DG; Röder M; Merkel A; Guigó R
    Bioinformatics; 2013 Mar; 29(5):614-21. PubMed ID: 23329413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TOGGLE: toolbox for generic NGS analyses.
    Monat C; Tranchant-Dubreuil C; Kougbeadjo A; Farcy C; Ortega-Abboud E; Amanzougarene S; Ravel S; Agbessi M; Orjuela-Bouniol J; Summo M; Sabot F
    BMC Bioinformatics; 2015 Nov; 16():374. PubMed ID: 26552596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel approaches for bioinformatic analysis of salivary RNA sequencing data for development.
    Kaczor-Urbanowicz KE; Kim Y; Li F; Galeev T; Kitchen RR; Gerstein M; Koyano K; Jeong SH; Wang X; Elashoff D; Kang SY; Kim SM; Kim K; Kim S; Chia D; Xiao X; Rozowsky J; Wong DTW
    Bioinformatics; 2018 Jan; 34(1):1-8. PubMed ID: 28961734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. piPipes: a set of pipelines for piRNA and transposon analysis via small RNA-seq, RNA-seq, degradome- and CAGE-seq, ChIP-seq and genomic DNA sequencing.
    Han BW; Wang W; Zamore PD; Weng Z
    Bioinformatics; 2015 Feb; 31(4):593-5. PubMed ID: 25342065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reusable, extensible, and modifiable R scripts and Kepler workflows for comprehensive single set ChIP-seq analysis.
    Cormier N; Kolisnik T; Bieda M
    BMC Bioinformatics; 2016 Jul; 17(1):270. PubMed ID: 27377783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CANEapp: a user-friendly application for automated next generation transcriptomic data analysis.
    Velmeshev D; Lally P; Magistri M; Faghihi MA
    BMC Genomics; 2016 Jan; 17():49. PubMed ID: 26758513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A benchmarking of workflows for detecting differential splicing and differential expression at isoform level in human RNA-seq studies.
    Merino GA; Conesa A; Fernández EA
    Brief Bioinform; 2019 Mar; 20(2):471-481. PubMed ID: 29040385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmarking differential expression analysis tools for RNA-Seq: normalization-based vs. log-ratio transformation-based methods.
    Quinn TP; Crowley TM; Richardson MF
    BMC Bioinformatics; 2018 Jul; 19(1):274. PubMed ID: 30021534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Guide for Designing and Analyzing RNA-Seq Data.
    Chatterjee A; Ahn A; Rodger EJ; Stockwell PA; Eccles MR
    Methods Mol Biol; 2018; 1783():35-80. PubMed ID: 29767357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A benchmarking of pipelines for detecting ncRNAs from RNA-Seq data.
    Di Bella S; La Ferlita A; Carapezza G; Alaimo S; Isacchi A; Ferro A; Pulvirenti A; Bosotti R
    Brief Bioinform; 2020 Dec; 21(6):1987-1998. PubMed ID: 31740918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CSEQ-SIMULATOR: A DATA SIMULATOR FOR CLIP-SEQ EXPERIMENTS.
    Kassuhn W; Ohler U; Drewe P
    Pac Symp Biocomput; 2016; 21():433-44. PubMed ID: 26776207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.