BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

927 related articles for article (PubMed ID: 28969628)

  • 1. Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants.
    Jaggessar A; Shahali H; Mathew A; Yarlagadda PKDV
    J Nanobiotechnology; 2017 Oct; 15(1):64. PubMed ID: 28969628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-structured antimicrobial surfaces: From nature to synthetic analogues.
    Elbourne A; Crawford RJ; Ivanova EP
    J Colloid Interface Sci; 2017 Dec; 508():603-616. PubMed ID: 28728752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature-Inspired Micro/Nano-Structured Antibacterial Surfaces.
    Jin E; Lv Z; Zhu Y; Zhang H; Li H
    Molecules; 2024 Apr; 29(9):. PubMed ID: 38731407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanotechnology tools for antibacterial materials.
    Rizzello L; Cingolani R; Pompa PP
    Nanomedicine (Lond); 2013 May; 8(5):807-21. PubMed ID: 23656266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired bactericidal surfaces with polymer nanocone arrays.
    Hazell G; Fisher LE; Murray WA; Nobbs AH; Su B
    J Colloid Interface Sci; 2018 Oct; 528():389-399. PubMed ID: 29870825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-Periprosthetic Infection Strategies: From Implant Surface Topographical Engineering to Smart Drug-Releasing Coatings.
    Ghimire A; Song J
    ACS Appl Mater Interfaces; 2021 May; 13(18):20921-20937. PubMed ID: 33914499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced biomimic bactericidal surfaces by coating with positively-charged ZIF nano-dagger arrays.
    Yuan Y; Zhang Y
    Nanomedicine; 2017 Oct; 13(7):2199-2207. PubMed ID: 28614735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-/nano-structured superhydrophobic surfaces in the biomedical field: part I: basic concepts and biomimetic approaches.
    Lima AC; Mano JF
    Nanomedicine (Lond); 2015 Jan; 10(1):103-19. PubMed ID: 25597772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials.
    Koch K; Barthlott W
    Philos Trans A Math Phys Eng Sci; 2009 Apr; 367(1893):1487-509. PubMed ID: 19324720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanofabrication of mechano-bactericidal surfaces.
    Linklater DP; Juodkazis S; Ivanova EP
    Nanoscale; 2017 Nov; 9(43):16564-16585. PubMed ID: 29082999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for producing "Lotus Effect" on a biomimetic shark skin.
    Liu Y; Li G
    J Colloid Interface Sci; 2012 Dec; 388(1):235-42. PubMed ID: 22995249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications.
    Nie C; Yang Y; Cheng C; Ma L; Deng J; Wang L; Zhao C
    Acta Biomater; 2017 Mar; 51():479-494. PubMed ID: 28082114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and Functional Regulation of Biomimetic Interfaces and Their Antifouling and Antibacterial Applications: A Review.
    Xu Y; Luan X; He P; Zhu D; Mu R; Wang Y; Wei G
    Small; 2024 May; 20(21):e2308091. PubMed ID: 38088535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomaterial-based treatments for medical device-associated infections.
    Tran N; Tran PA
    Chemphyschem; 2012 Jul; 13(10):2481-94. PubMed ID: 22517627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion.
    Bhushan B; Jung YC; Koch K
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1894):1631-72. PubMed ID: 19376764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fast, precise and low-cost replication technique for nano- and high-aspect-ratio structures of biological and artificial surfaces.
    Koch K; Schulte AJ; Fischer A; Gorb SN; Barthlott W
    Bioinspir Biomim; 2008 Dec; 3(4):046002. PubMed ID: 18779630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects.
    Kumar S; Nehra M; Kedia D; Dilbaghi N; Tankeshwar K; Kim KH
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110154. PubMed ID: 31753376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibacterial surfaces: the quest for a new generation of biomaterials.
    Hasan J; Crawford RJ; Ivanova EP
    Trends Biotechnol; 2013 May; 31(5):295-304. PubMed ID: 23434154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reusable mechano-bactericidal surface with echinoid-shaped hierarchical micro/nano-structure.
    Kim HK; Baek HW; Park HH; Cho YS
    Colloids Surf B Biointerfaces; 2024 Feb; 234():113729. PubMed ID: 38160475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteria Death and Osteoblast Metabolic Activity Correlated to Hydrothermally Synthesised TiO₂ Surface Properties.
    Jaggessar A; Mathew A; Tesfamichael T; Wang H; Yan C; Yarlagadda PK
    Molecules; 2019 Mar; 24(7):. PubMed ID: 30934764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.