BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

800 related articles for article (PubMed ID: 28969695)

  • 1. Together JUN and DDIT3 (CHOP) control retinal ganglion cell death after axonal injury.
    Syc-Mazurek SB; Fernandes KA; Wilson MP; Shrager P; Libby RT
    Mol Neurodegener; 2017 Oct; 12(1):71. PubMed ID: 28969695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of SARM1 and DR6 in retinal ganglion cell axonal and somal degeneration following axonal injury.
    Fernandes KA; Mitchell KL; Patel A; Marola OJ; Shrager P; Zack DJ; Libby RT; Welsbie DS
    Exp Eye Res; 2018 Jun; 171():54-61. PubMed ID: 29526794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional control of retinal ganglion cell death after axonal injury.
    Syc-Mazurek SB; Yang HS; Marola OJ; Howell GR; Libby RT
    Cell Death Dis; 2022 Mar; 13(3):244. PubMed ID: 35296661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelin 1-induced retinal ganglion cell death is largely mediated by JUN activation.
    Marola OJ; Syc-Mazurek SB; Howell GR; Libby RT
    Cell Death Dis; 2020 Sep; 11(9):811. PubMed ID: 32980857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. JUN regulates early transcriptional responses to axonal injury in retinal ganglion cells.
    Fernandes KA; Harder JM; Kim J; Libby RT
    Exp Eye Res; 2013 Jul; 112():106-17. PubMed ID: 23648575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. JUN is important for ocular hypertension-induced retinal ganglion cell degeneration.
    Syc-Mazurek SB; Fernandes KA; Libby RT
    Cell Death Dis; 2017 Jul; 8(7):e2945. PubMed ID: 28726785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of intrinsic and extrinsic signaling pathway in excitotoxic retinal ganglion cell death.
    Fahrenthold BK; Fernandes KA; Libby RT
    Sci Rep; 2018 Mar; 8(1):4641. PubMed ID: 29545615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. JNK2 and JNK3 are major regulators of axonal injury-induced retinal ganglion cell death.
    Fernandes KA; Harder JM; Fornarola LB; Freeman RS; Clark AF; Pang IH; John SW; Libby RT
    Neurobiol Dis; 2012 May; 46(2):393-401. PubMed ID: 22353563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DDIT3 (CHOP) contributes to retinal ganglion cell somal loss but not axonal degeneration in DBA/2J mice.
    Marola OJ; Syc-Mazurek SB; Libby RT
    Cell Death Discov; 2019; 5():140. PubMed ID: 31632741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mkk4 and Mkk7 are important for retinal development and axonal injury-induced retinal ganglion cell death.
    Syc-Mazurek SB; Rausch RL; Fernandes KA; Wilson MP; Libby RT
    Cell Death Dis; 2018 Oct; 9(11):1095. PubMed ID: 30367030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DLK-dependent signaling is important for somal but not axonal degeneration of retinal ganglion cells following axonal injury.
    Fernandes KA; Harder JM; John SW; Shrager P; Libby RT
    Neurobiol Dis; 2014 Sep; 69():108-16. PubMed ID: 24878510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor necrosis factor alpha has an early protective effect on retinal ganglion cells after optic nerve crush.
    Mac Nair CE; Fernandes KA; Schlamp CL; Libby RT; Nickells RW
    J Neuroinflammation; 2014 Nov; 11():194. PubMed ID: 25407441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinal glial responses to optic nerve crush are attenuated in Bax-deficient mice and modulated by purinergic signaling pathways.
    Mac Nair CE; Schlamp CL; Montgomery AD; Shestopalov VI; Nickells RW
    J Neuroinflammation; 2016 Apr; 13(1):93. PubMed ID: 27126275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of tumor necrosis factor receptor-1 in the death of retinal ganglion cells following optic nerve crush injury in mice.
    Tezel G; Yang X; Yang J; Wax MB
    Brain Res; 2004 Jan; 996(2):202-12. PubMed ID: 14697498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sphingosine 1-phosphate receptor 1 is required for retinal ganglion cell survival after optic nerve trauma.
    Joly S; Pernet V
    J Neurochem; 2016 Aug; 138(4):571-86. PubMed ID: 27309795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BAX-Depleted Retinal Ganglion Cells Survive and Become Quiescent Following Optic Nerve Damage.
    Donahue RJ; Maes ME; Grosser JA; Nickells RW
    Mol Neurobiol; 2020 Feb; 57(2):1070-1084. PubMed ID: 31673950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal transcriptome profiling at transcription start sites: a cap analysis of gene expression early after axonal injury.
    Yasuda M; Tanaka Y; Nishiguchi KM; Ryu M; Tsuda S; Maruyama K; Nakazawa T
    BMC Genomics; 2014 Nov; 15(1):982. PubMed ID: 25407019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nerve fibre layer degeneration and retinal ganglion cell loss long term after optic nerve crush or transection in adult mice.
    Sánchez-Migallón MC; Valiente-Soriano FJ; Salinas-Navarro M; Nadal-Nicolás FM; Jiménez-López M; Vidal-Sanz M; Agudo-Barriuso M
    Exp Eye Res; 2018 May; 170():40-50. PubMed ID: 29452106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caspase-7: a critical mediator of optic nerve injury-induced retinal ganglion cell death.
    Choudhury S; Liu Y; Clark AF; Pang IH
    Mol Neurodegener; 2015 Aug; 10():40. PubMed ID: 26306916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sigma-1R Protects Retinal Ganglion Cells in Optic Nerve Crush Model for Glaucoma.
    Li L; He S; Liu Y; Yorio T; Ellis DZ
    Invest Ophthalmol Vis Sci; 2021 Aug; 62(10):17. PubMed ID: 34406331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.